PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical modelling of metal-elastomer spring nonlinear response for low-rate deformations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Advanced knowledge of mechanical characteristics of metal-elastomer springs is useful in their design process and selection. It can also be used in simulating dynamics of machine where such elements are utilized. Therefore this paper presents a procedure for preparing and executing FEM modelling of a single metal-elastomer spring, also called Neidhart’s spring, for low-rate deformations. Elastomer elements were made of SBR rubber of two hardness values: 50°Sh and 70°Sh. For the description of material behaviour the Bergström-Boyce model has been used.
Rocznik
Strony
31--37
Opis fizyczny
Bibliogr. 19 poz., rys., wykr.
Twórcy
autor
  • Faculty of Mechanical Engineering and Robotics, Department of Machine Design and Technology, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
  • Faculty of Mechanical Engineering and Robotics, Department of Machine Design and Technology, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
  • Faculty of Mechanical Engineering and Robotics, Department of Strength and Fatigue of Materials and Structures, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • 1. Arruda E.M., Boyce M.C. (1993), A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials, Journal of the Mechanics and Physics of Solids, 41 (2), 389-412.
  • 2. Bergström J.S. (1999), Large strain time-dependent behavior of elastomeric materials, Ph.D. thesis, MIT.
  • 3. Bergström J.S. (2015), Mechanics of solid polymers: theory and computational modeling, William Andrew, San Diego, USA.
  • 4. Bergström J.S., Boyce M.C. (1998), Constitutive modeling of the large strain time-dependent behavior of elastomers, Journal of the Mechanics and Physics of Solids, 46, 931-954.
  • 5. Chouinard, P., Proulx, S., Lucking Bigué J.P., Plante, J. (2009), Design of an antagonistic bistable dielectric elastomer actuator using the Bergstrom-Boyce constitutive viscoelastic model, presented at 33rd Mechanisms and Robotics Conference, 2009, San Diego, CA, USA.
  • 6. Cieplok G. (2009), Verification of the nomogram for amplitude determination of resonance vibrations in the run-down phase of a vibratory machine, Journal of Theoretical and Applied Mechanics, 47, 295-306.
  • 7. Dal H., Kaliske M. (2009), Bergström–Boyce model for nonlinear finite rubber viscoelasticity: theoretical aspects and algorithmic treatment for the FE method, Computational Mechanics, 44, 809–823.
  • 8. Diego S., Casado J. A, Carrascal I., Ferreno D., Cardona, J., Arcos R. (2017), Numerical and experimental characterization of the mechanical behavior of a new recycled elastomer for vibration isolation in railway applications, Construction and Building Materials, 134, 18-31.
  • 9. Doi M., Edwards S.F. (1986), The theory of polymer dynamics. Oxford University Press, Oxford.
  • 10. Gennes P.G. (1971), Reptation of a polymer chain in the presence of fixed obstacles, The Journal of Chemical Physics, 55 (2), 572-579.
  • 11. Gent A. N. (1996), A new constitutive relation for rubber, Rubber Chemistry and Technology, 69, 59-61.
  • 12. Ghoreishy M.H.R., Firouzbakht M., Naderi G. (2014), Parameter determination and experimental verification of Bergström-Boyce hysteresis model for rubber compounds reinforced by carbon black blends. Materials and Design, 53, 457–465.
  • 13. Ghoreishy M.H.R., Naderi G., Roohandeh B. (2015), An experimental investigation on the degradation effect of ozone on hyperelastic behavior of an NR/BR blend, Iranian Polymer Journal, 24(12), 1015-1024.
  • 14. Hossain M., Vu D.K., Steinmann P. (2012), Experimental study and numerical modelling of VHB 4910 polymer, Computational Materials Science, 59, 65-74.
  • 15. Kießling R., Landgraf R., Scherzer R., Ihlemann J. (2016), Introducing the concept of directly connected rheological elements by reviewing rheological models at large strains, International Journal of Solids and Structures, 97-98, 650-667.
  • 16. Mooney M. (1940), A theory of large elastic deformation, Journal of Applied Physics, 11(9), 582-592.
  • 17. Neidhart H. (1951), Elastic joints, US patent 2 712 742.
  • 18. Sikora W., Michalczyk K., Machniewicz T. (2016), A study of the preload force in metal-elastomer torsion springs, Acta Mechanica et Automatica, 10(4), 300-305.
  • 19. Yeoh O.H. (1993), Some forms of the strain energy function for rubber, Rubber Chemistry and Technology, 66(5), 754-771.
Uwagi
1. This work is supported by AGH University of Science and Technology under research program no. 15.11.130.598.
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ce32991a-cbe4-4e9b-a033-b002efe09023
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.