PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design and analysis of low bend losses of the air core optical fiber for wavelength selective devices

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the bending loss, modal field diameter and the modal field distribution of the air core optical fiber are investigated. The effect of optical and geometrical parameters on the bending loss, power confinement and modal field diameter are examined in this special fiber. Detailed design parameters and operation principles of the air core optical fiber are discussed. The structure is based on a unique three layered structure of air core optical fiber, having the central air core, germanium silicate ring core, and silica cladding. It has been demonstrated that air core optical fiber has an excellent mode transformation capability. The air core optical fiber is expected to have a versatile application in local area optical communication networks and tunable wavelength selective devices. The main advantages of air core optical fiber are low bend loss and small mode field diameter, which is a prime focus of this paper.
Czasopismo
Rocznik
Strony
341--353
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
  • Department of Electronics Engineering, Indian School of Mines, Dhanbad-826004, Jharkhand, India
  • Department of Electronics Engineering, Indian School of Mines, Dhanbad-826004, Jharkhand, India
Bibliografia
  • [1] KNIGHT J.C., RUSSELL P.S.J., New ways to guide light, Science 296(5566), 2002, pp. 276–277.
  • [2] FINK Y., RIPIN D.J., SHANHUI FAN, CHIPING CHEN, JOANNEPOULOS J.D., THOMAS E.L., Guiding optical light in air using an all-dielectric structure, Journal of Lightwave Technology 17(11), 1999, pp. 2039–2041.
  • [3] HARRINGTON J.A., RABII C., GIBSON D., Transmission properties of hollow glass waveguides for the delivery of CO2 surgical laser power, IEEE Journal of Selected Topics in Quantum Electronics 5(4), 1999, pp. 948–953.
  • [4] CHOI S., OH K., SHIN W., RYU U.C., Low loss mode converter based on adiabatically tapered hollow optical fibre, Electronics Letters 37(13), 2001, pp. 823–825.
  • [5] BIRKS T.A., KNIGHT J.C., RUSSELL P.S.J., Endlessly single-mode photonic crystal fibre, Optics Letters 22(13), 1997, pp. 961–963.
  • [6] RANKA J.K., WINDELER R.S., STENTZ A.J., Optical properties of high-delta air–silica microstructure optical fibers, Optics Letters 25(11), 2000, pp. 796–798.
  • [7] EGGLETON B.J., KERBAGE C., WESTBROOK P.S., WINDELER R.S., HALE A., Microstructured optical fiber devices, Optics Express 9(13), 2001, pp. 698–713.
  • [8] PETROPOULOS P., MONRO T.M., BELARDI W., FURUSAWA K., LEE J.H., RICHARDSON D.J., 2R-regenerative all-optical switch based on a highly nonlinear holey fiber, Optics Letters 26(16), 2001, pp. 1233–1235.
  • [9] FUOCHI M., HAYES J.R., FURUSAWA K., BELARDI W., BAGGETT J.C., MONRO T.M., RICHARDSON D.J., Polarization mode dispersion reduction in spun large mode area silica holey fibres, Optics Express 12(9), 2004, pp. 1972–1977.
  • [10] CHAUDHURI P.R., LU C., XIAOYAN W., Scalar model and exact vectorial description for the design analysis of hollow optical fiber components, Optics Communications 228(4–6), 2003, pp. 285–293.
  • [11] JIANPING YIN, YIFU ZHU, LP01-mode output beam from a micro-sized hollow optical fiber: a simple theoretical model and its applications in atom optics, Journal of Applied Physics 85(5), 1999, pp. 2473– 2481.
  • [12] KEATON G.L., ARBORE M.A., KANE T.J., Optical wavelength filtering apparatus with depressed--index claddings, U.S. Patent 6(563), 2003, pp. 980–995.
  • [13] ITO H., SAKAKI K., NAKATA T., JHE W., OHTSU M., Optical potential for atom guidance in a cylindrical-core hollow fiber, Optics Communications 115(1), 1995, pp. 57–64.
  • [14] BARNARD C., MYSLINSKI P., CHROSTOWSKI J., KAVEHRAD M., Analytical model for rare-earth-doped fiber amplifiers and lasers, IEEE Journal of Quantum Electronics 30(8), 1994, pp. 1817–1830.
  • [15] DIGONNET M.J.F., Closed-form expressions for the gain in three- and four-level laser fibers, IEEE Journal of Quantum Electronics 26(10), 1990, pp. 1788–1796.
  • [16] ARTIGLIA M., COPPA G., DI VITA P., POTENZA M., SHARMA A., Mode field diameter measurements in single-mode optical fibers, Journal of Lightwave Technology 7(8), 1989, pp. 1139–1152.
  • [17] SAKAI J., KIMURA T., Bending loss of propagation modes in arbitrary-index profile optical fibers, Applied Optics 17(10), 1978, pp. 1499–1506.
  • [18] SELVAS R., SAHU J.K., FU L.B., JANG J.N., NILSSON J., GRUDININ A.B., YLÄ-JARKKO K.H., ALAM S.A., TURNER P.W., MOORE J., High-power, low-noise, Yb-doped, cladding-pumped, three-level fiber sources at 980 nm, Optics Letters 28(13), 2003, pp. 1093–1095.
  • [19] MARCUSE D., Curvature loss formula for optical fibres, Journal of the Optical Society of America 66(3), 1976, pp. 216–220.
  • [20] COHEN L.G., MARCUSE D., MAMMEL W.L., Radiating leaky-mode losses in single-mode lightguides with depressed-index claddings, IEEE Journal of Quantum Electronics 18(10), 1982, pp. 1467–1472.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ce30b230-eafc-44fa-9a2b-457108b730c4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.