PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bedforms evolution in the Vistula River mouth during extreme flood event, southern Baltic Sea

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Results of bathymetric surveys conducted to examine changes of sand dunes geometry in the Vistula River mouth before, during and after the extreme flood event are presented. A total of 2076 dunes were analysed based on a series of bed elevation profiles obtained along the centreline of about 3.3 km length. Low-steepness dunes characterized by the mean lee-side slopes milder than β<10° are fully dominant at low flows. In contrast, at high hydrology, nearly 50% of dunes indicate β>10°. Dune height and length are substantially out of phase with progressive changes of water discharge exposing a well-pronounced anti-clockwise hysteresis. Distinct behaviour of dune dimensions reflected in increasing of dune steepness H/λ of about 3-fold and decreasing of about 4-fold were observed during rising and falling discharges, respectively. The bed roughness due to dunes presence showed changes of about 10-fold during the both of limbs and is found to be in range of about kdunes=(1/5÷3/5)Hmean. At the mesoscale region, spectra followed sufficiently by the ‘–3 power law’ for low hydrology, with steeper spectrum slopes close to ‘–4’ during moderate and high water discharges. With the development of the flood, potential of flow separation phenomena was increased of about 9-fold, from 2.2% at the flood beginning phase up to 20% at the flood peak. The obtained results could be used for the improvement of the hydraulic numerical models in sand-bed rivers to predict bedforms evolution, flow resistance and turbulence as well as water levels for proper river system management during flood events.
Czasopismo
Rocznik
Strony
212--226
Opis fizyczny
Bibliogr. 53 poz., fot., map., rys., tab., wykr.
Twórcy
  • Maritime Institute, Gdynia Maritime University, Gdańsk, Poland
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
autor
  • GEO Ingenieurservice Nord-West, Wilhelmshaven, Germany
  • Maritime Institute, Gdynia Maritime University, Gdańsk, Poland
Bibliografia
  • 1. Aberle, J., Nikora, V., Henning, M., Ettmer, B., Hentschel, B., 2010. Statistical characterization of bed roughness due to bed forms: A field study in the Elbe River at Aken, Germany. Water Resour. Res. 46, W03521. https://doi.org/10.1029/2008WR007406
  • 2. Allen, J.R.L., Collinson, J.D., 1974. The superimposition and classification of dunes formed by unidirectional aqueous flows. Sediment. Geol. 12, 169-178.
  • 3. Amsler, M.L., Garcia, M.H., 1997. Sand-dune geometry of large rivers during floods. J. Hydraul. Eng. 123, 582-585.
  • 4. Ashley, G.M., 1990. Classification of large-scale subaqueous bedforms: a new look at an old problem. J. Sediment. Res. 60, 160-172. https://doi.org/10.2110/jsr.60.160
  • 5. Barnard, P.L., Erikson, L.H., Edwin, P.L., Elias, E.P.L., Dartnell, P., 2013. Sediment transport patterns in the San Francisco Bay Coastal System from cross-validation of bedform asymmetry and modeled residual flux. Mar. Geol. 345, 72-95. https://doi.org/10.1016/j.margeo.2012.10.011
  • 6. Best, J.L., 2005. The fluid dynamics of river dunes: a review and some future research directions. J. Geophys. Res. Earth Surf. 110, JF000218.
  • 7. Best, J.L., Kostaschuk, R., 2002. An experimental study of turbulent flow over a low-angle dune. J. Geophys. Res. Oceans 107 (C9), 3135. https://doi.org/10.1029/2000JC000294
  • 8. Best, J., Simmons, S., Parsons, D., Oberg, K., Czuba, J., Malzon, C., 2010. A new methodology for the quantitative visualization of coherent flow structures in alluvial channels using multibeam echosounding (MBES). Geophys. Res. Lett. 37, L06405. https://doi.org/10.1029/2009GL041852
  • 9. Bridge, J.S., 2003. Rivers and Floodplains; Forms, Processes, and Sedimentary Record. Blackwell Publ., Oxford, U.K., 600 pp.
  • 10. Carling, P.A., Gölz, E., Orr, H.G., Radecki-Pawlik, A., 2000. The morphodynamics of fluvial sand dunes in the River Rhine, near Mainz, Germany. I. Sedimentology and morphology. Sedimentology 47, 227-252.
  • 11. Cisneros, J., Best, J., van Dijk, T., de Almeida, R.P., Amsler, M., Boldt, J., et al., 2020. Dunes in the world’s big rivers are characterized by low-angle lee-side slopes and a complex shape. Nature Geosci. 13, 156-162. https://doi.org/10.1038/s41561-019-0511-7
  • 12. Davis, J.P., Walker, D.J., Townsend, M., Young, I.R., 2004. Wave-formed sediment ripples: Transient analysis of spectral development. J. Geophys. Res. 109, C07020. https://doi.org/10.1029/2004JC002307
  • 13. Flemming, B.W., 1988. Zur Klassifikation subaquatischer, strömungstransversaler Transportkörper. Bochum Geol. Geotechn. Arb. 29, 44-47.
  • 14. Guala, M., Heisel, M., Singh, A., Musa, M., Buscombe, D., Grams, P., 2020. A mixed length scale model for migrating fluvial bedforms. Geophys. Res. Lett. 47, 2019GL086625. https://doi.org/10.1029/2019GL086625
  • 15. Harbor, D.J., 1998. Dynamics of bedforms in the lower Mississippi River. J. Sediment. Res. 68 (5), 750-762.
  • 16. Hino, M., 1968. Equilibrium-range spectra of sand waves formed by flowing water. J. Fluid Mech. 34, 565-573. https://doi.org/10.1017/S0022112068002089
  • 17. Hu, H., Wei, T., Yang, Zh, Christopher, R., Hackney, C.R., Parsons, D.R, 2018. Low-angle dunes in the Changjiang (Yangtze) Estuary: Flow and sediment dynamics under tidal influence. Estuar. Coast. Shelf Sci. 205, 110-122. https://doi.org/10.1016/j.ecss.2018.03.009
  • 18. IMGW-PIB, 2020. www.pogodynka.pl. Online hydrological and meteorological database of the Institute of Meteorology and Water Management — National Research Institute, Warsaw; Instytut Meteorologii i Gospodarki Wodnej — Państwowy Instytut Badawczy, Warszawa (accessed on 31 December 2020).
  • 19. Julien, P.Y., Klaassen, G.J., 1995. Sand-dune geometry of large rivers during floods. J. Hydraul. Eng. 121 (9), 657-663. https://doi.org/10.1061/(ASCE)0733-429(1995)121:9(657)
  • 20. Julien, P.Y., Klaassen, G.J., Ten Brinke, W.B.M., Wilbers, A.W.E., 2002. Case study: bed resistance of Rhine River during 1998 flood. J. Hydraul. Eng. 128 (12), 1042-1050. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:12(1042)
  • 21. Koop, L., van der Reijden, K.J., Mestdagh, S., Tom Ysebaert, T., Govers, L.L., Han Olff, H., Herman, P.M.J., Snellen, M., Dick, G., Simons, D.G., 2020. Measuring Centimeter-Scale Sand Ripples Using Multibeam Echosounder Backscatter Data from the Brown Bank Area of the Dutch Continental Shelf. Geosciences 10, 495. https://doi.org/10.3390/geosciences10120495
  • 22. Lefebvre, A., Winter, C., 2016. Predicting bed form roughness: the influence of lee side angle. Geo-Mar. Lett. 36, 121-133. https://doi.org/10.1007/s00367-016-0436-8
  • 23. Lisimenka, A., Kubicki, A., 2017. Estimation of dimensions and orientation of multiple riverine dune generations using spectra moments. Geo-Mar. Lett. 37, 59-74. https://doi.org/10.1007/s00367-016-0475-1
  • 24. Lisimenka, A., Zwoli ́nski, Z., Rudowski, S., 2015. The nature of the bed load transport in the mouth of the river to the non-tidal sea (the Vistula River, Poland), EGU General Assembly, Geophys. Res. Abst. 17 EGU2015-8955-1 (poster).
  • 25. Lyons, P., Pouliquen, E., 2004. Advances in high-resolution seafloor characterization in support of high-frequency underwater acoustics studies: techniques and examples. Meas. Sci. Technol. 15, R59-R72. https://doi.org/10.1088/0957-0233/15/12/R01
  • 26. Majewski, W., 2013. Sustainable development of the Lower Vistula. Meteorol. Hydrol. Water Manage. 1 (1), 33-37.
  • 27. Majewski, W., 2018. Vistula River, its characteristics and management. Int. J. Hydrol. 2 (4), 493-496. https://doi.org/10.15406/ijh.2018.02.00116
  • 28. Makowski, J., 1995. Setna rocznica wykonania Przekopu Wisły 1885-1995. IBW PAN, Gdańsk, 100 (in Polish).
  • 29. Martin, R.L., Jerolmack, D.J., 2013. Origin of hysteresis in bed form response to unsteady flows. Water Resour. Res. 49, 1314-1333. https://doi.org/10.1002/wrcr.20093
  • 30. Nelson, J.M., Logan, B.L., Kinzel, P.J., Shimizu, Y., Giri, S., Shreve, R.L., McLean, S.R., 2011. Bedform response to flow variability. Earth Surf. Process. Landforms 36, 1938-1947. https://doi.org/10.1002/esp.2212
  • 31. Nikora, V., Sukhodolov, A., Rowinski, P.M., 1997. Statistical sand wave dynamics in one-directional water flows. J. Fluid Mech. 351, 17-39. https://doi.org/10.1017/S0022112097006708
  • 32. Paarlberg, A.J., Dohmen-Janssen, C.M., Hulscher, S.J.M.H., Schielen, R., Termes, A.P.P., 2008. Modelling dynamic roughness in rivers during floods. In: Parsons, D.R., Garlan, T., Best, J.L. (Eds.), MARID 2008, 3rd international workshop on marine and river dune dynamics, 1-3 April 2008, Leeds, UK, 257-264.
  • 33. Parsons, D.R., Best, J.L., Orfeo, O., Hardy, R.J., Kostaschuk, R., Lane, S.N, 2005. Morphology and flow fields of three-dimensional dunes, Rio Paraná, Argentina: Results from simultaneous multibeam echo sounding and acoustic Doppler current profiling. J. Geophys. Res. Earth. Surg. 110, F04S03. https://doi.org/10.1029/2004JF000231
  • 34. Percival, D.B., Walden, A.T., 1993. Spectral analysis for physical applications. Cambridge University Press, Cambridge https://doi.org/10.1017/CBO9780511622762
  • 35. Reesink, A.J.H., Parsons, D.R., Ashworth, P.J., Best, J.L., Hardy, R.J., Murphy, B.J., McLelland, S.J., Unsworth, C., 2018. The adaptation of dunes to changes in river flow. Earth-Sci. Rev. 185, 1065-1087. https://doi.org/10.1016/j.earscirev.2018.09.002
  • 36. Rubin, D.M., McCulloch, D.S., 1980. Single and superimposed bedforms: a synthesis of San Francisco Bay and flume observations. Sediment. Geol. 26 (1—3), 207-231.
  • 37. Rudowski, S., Edut, J., Wróblewski, R., Dworniczak, J., Lisimenka, A., Jereczek-Korzeniewska, K., Galer-Tatarowicz, K., 2017. Granulometry of bottom sediments of the Przekop Wisły canal. Bull. Maritime Inst. Gdańsk 32 (1), 14-20. https://doi.org/10.5604/12307424.1224050
  • 38. Sambrook Smith, G.H., Best, J.L., Orfeo, O., Vardy, M.F.,Zinger, J.A., 2013. Decimeter-scale in situ mapping of modern cross-bedded dune deposits using parametric echo sounding: A new method for linking river processes and their deposits. Gephys. Res. Lett. 40, 3883-3887. https://doi.org/10.1002/grl.50703
  • 39. Szymański, E., 1897a. The regulation of the Vistula River mouth. Tech. Rev. 17, 270-274 (in Polish).
  • 40. Szymański, E., 1897b. The regulation of the Vistula River mouth (continuation). Tech. Rev. 18, 285-289 (in Polish).
  • 41. Ten Brinke, W.B.M., Wilbers, A.W.E., Wesseling, C., 1999. Dune growth, decay and migration rates during a large-magnitude flood at a sand and mixed sand-gravel bed in the Dutch Rhine river system. In: Smith, N.D., Rogers, J. (Eds.), Fluvial Sedimentology VI, 15-32. https://doi.org/10.1002/9781444304213.ch2
  • 42. Van der Mark, C.F., Blom, A., 2007. A new and widely applicable tool for determining the geometric properties of bedforms. University of Twente, Enschede CE&M Research Report 2007R-003/WEM-002.
  • 43. Van Rijn, L.C., 1984. Sediment transport. Part III: Bed forms and alluvial roughness. J. Hydr. Eng. 110 (12), 1733-1754.
  • 44. Van Rijn, L.C., 1993. Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas. AQUA Publications — I11, Amsterdam.
  • 45. Venditti, J.G., Lin, C.-Y.M., Kazemi, M., 2016. Variability in bedform morphology and kinematics with transport stage. Sedimentology 63, 1017-1040. https://doi.org/10.1111/sed.12247
  • 46. Warmink, J.J., Booij, M.J., Van der Klis, H., Hulscher, S.J.M.H., 2007. Uncertainty in water level predictions due to various calibrations. In: Proc. 1st International Conference on Adaptive & Integrated Water Management, CAIWA 2007, Basel, Switzerland, 1-18.
  • 47. Warmink, J.J., Booij, M.J., Van der Klis, H., Hulscher, S.J.M.H., 2012. Quantification of uncertainty in design water levels due to uncertain bed form roughness in the Dutch river Waal. Hydrol. Process 27 (11), 1646-1663. https://doi.org/10.1002/hyp.9319
  • 48. Warmink, J.J., Straatsma, M.W., Huthoff, F., Booij, M.J., Hulscher, S.J.M.H., 2013. Uncertainty of design water levels due to combined bed form and vegetation roughness in the Dutch River Waal. J. Flood Risk Manag. 6 (4), 302-318.
  • 49. Warmink, J.J., 2014. Dune dynamics and roughness under gradually varying flood waves, comparing flume and field observations. Advances in Geosciences 39, 115-121. https://doi.org/10.5194/adgeo-39-115-2014
  • 50. Wignall, P.B., Best, J.L., 2000. The Western Irish Namurian Basin reassessed. Basin Res. 12, 59-78.
  • 51. Wilbers, A.W.E., Ten Brinke, W.B.M., 2003. The response of subaqueous dunes to floods in sand and gravel bed reaches of the Dutch Rhine. Sedimentology 50, 1013-1034. https://doi.org/10.1046/j.1365-3091.2003.00585.x
  • 52. Wu, S., Jun Xu, Y., Wang, B., Cheng, H., 2021. Riverbed morphology of the Lowermost Mississippi River — Implications of leeside slope, flow resistance and bedload transport in a large alluvial river. Geomorphology 385, 107733. https://doi.org/10.1016/j.geomorph.2021.107733
  • 53. Young, I., 1995. The determination of confidence limits associated with estimates of the spectral peak frequency. Ocean. Eng. 22, 669-689. https://doi.org/10.1016/0029-8018(95)00002-3
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ce2ca85f-d4f8-4e00-80bd-ea6d59e9c41c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.