PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Utilisation of nitrocompounds

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper is a review of methods of biological, chemical and physical utilisation of nitrocompounds, extremely toxic xenobiotics that are abundant in the biosphere and are recalcitrant to biodegradation. Due to their unique physicochemical properties the nature itself has significant problem with complete degradation of nitroxenobiotic substances. There are number of methods developed in order to prevent further contamination of the environment leading to defoliation, inhibition of growth of plants and has adverse health effects on animals. Their abundance, deriving mainly from military industry, poses a serious threat to biosphere and current methods of their utilisation require further optimization.
Rocznik
Strony
63--73
Opis fizyczny
Bibliogr. 49 poz., rys.
Twórcy
autor
  • Institute of General Food Chemistry, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland
  • Institute of Technical Biochemistry, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland
autor
  • Institute of General Food Chemistry, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland
Bibliografia
  • 1. Williams MA, Reddy G, Quinn MJ, Johnson MS. Wildlife toxicity assessments for chemicals of military concern. Elsevier Science and Technology 2015, 25-51.
  • 2. Gong P, Kuperman RG, Sunahara GI. Genotoxicity of 2,5-and 2,6-dinitrotoluene as measured by Tradescantia micronucleus(Trad-MN)bioassay. Mutat Res 2003, 538: 13-18. 1
  • 3. Price RA, Pennington JC, Neumann D, Hayes CA, Larson SL. Technical Report EL-97-11 US Army Engineer Waterways Experiment Station, Vicksburg, 1997. 1.
  • 4. Lipczynska-Kochany E. Degradation of nitrobenzene and nitrophenols by means of advanced oxidation processes in a homogeneous phase: Photolysis in the presence of hydrogen peroxide versus the Fenton reaction. Chemosphere 1992, 24:1369-1380.
  • 5. Ek H, Nilsson E, Dave G. Effects of TNT leakage from dumped ammunition on fish and invertebrates in static brackish water systems. Ecotox Environ Saf 2008, 69:104-111.
  • 6. Sekhar PK, Wignes F. Trace detection of research department explosive (RDX) using electrochemical gas sensor. Sens Act B: Chem 2016 227:185-190.
  • 7. Rezaei B. Using of multi-walled carbon nanotubes electrode for adsorptive stripping voltammetric determination of ultratrace levels of RDX explosive in the environmental samples. J Haz Mat 2010, 83:138-144.
  • 8. Anasonye F, Winquist E, Räsänen M. Bioremediation of TNT contaminated soil with fungi under laboratory and pilot scale conditions. Int Biodeterior 2015, 105:7-12.
  • 9. Kostowski W, Herman ZS. Farmakologia. Podstawy farmakoterapii.. Wydawnictwo Lekarskie PZWL, 2003.
  • 10. Shen J, Zhang J, Zuo Y. Biodegradation of 2,4,6-trinitrophenol by Rhodococcus sp. isolated from a picric acid-contaminated soil. J Haz Mat 2009, 163:1199-1206.
  • 11. Mathieu D, Alaime T. Impact sensitivities of energetic materials: Exploring the limitations of a model based only on structural formulas. J Mol Graph Model 2015, 62:81-86.
  • 12. McMurry J. Organic Chemistry 4th Ed, Warszawa, 2003.
  • 13. Kong M, Wang K, Dong R, Gao H. Enzyme catalytic nitration of aromatic compounds. Enz Micro Tech 2015, 73-74:34-43.
  • 14. Domka-Rybka A. Wybuchowy biznes w bydgoskim Nitro-Chemie. Ich trotyl i heksogen znają na całym świecie.
  • 15. http://www.strefabiznesu.pomorska.pl/artykul/wybuchowy-biznes-w-bydgoskim-nitro-chemie-ich-trotyl-i-heksogen-znaja-na-calym-swiecie-wideo
  • 16. Haberman C. Agent Orange’s Long Legacy, for Vietnam and Veterans. NYT, 2014.
  • 17. Rose H, Rose S. Chemical spraying as reported by refugees from South Vietnam. Science 1972, 177:710-712.
  • 18. Grundlingh J, Dargan P, El-Zanfaly M, Wood D. 2,4-Dinitrophenol (DNP): A weight loss agent with significant acute toxicity and risk of death. J Med Toxicol 2011, 7:205-212.
  • 19. Encyclopaedia of Occupational Health and Safety. http://www.iloencyclopaedia.org/component/k2/179-104-guide-to- hemicals/nitrocompounds-aromatic-health-hazards Accessed 16 February 2016.
  • 20. Tchounwou PB, Newsome D, Glass K, Centeno JA, Leszczynski J, Bryant J, Okoh J, Ishaque A, Broker M. Environmental toxicology and health effects associated with dinitrotoluene exposure. Rev Environ Health 2013, 18:203-229.
  • 21. Brüschweiler BJ, Küng S, Bürgi D. Identification of non-regulated aromatic amines of toxicological concern which can be cleaved from azo dyes used in clothing textiles. Reg Toxicol Pharm 2014, 69:263-272.
  • 22. Erkurt EA, Ünyayar A, Kumbur H. Decolorization of synthetic dyes by white rot fungi, involving laccase enzyme in the process. Process Biochem 2007, 42:1429-1435.
  • 23. Koprivanac N, Vujevic D. Degradation of an azo dye by fenton type processes assisted with UV irradiation. Int J Chem React Eng 2007, 5:1-11.
  • 24. Shah M. Effective treatment systems for azo dye degradation: A joint venture between physico-chemical & microbiological process. Int Biodeterior Biodegr 2014, 2:231-242.
  • 25. Verma P, Baldrian P, Nerud F. Decolorization of structurally different synthetic dyes using cobalt(II)/ascorbic acid/hydrogen peroxide system. Chemosphere 2003, 50:975.
  • 26. Guivarch E, Trevin S, Lahitte C, Oturan MA. Degradation of azo dyes in water by Electro-Fenton process. Environ Chem Lett 2003, 1:38.
  • 27. Stock NL, Peller J, Vinodgopal K, Kamat PV. Combinative sonolysis and photocatalysis for textile dye degradation. Environ Sci Technol 2000, 34:17-47.
  • 28. Koyuncu I, Topacik D, Yuksel E. Reuse of reactive dyehouse wastewater by nanofiltration: process water quality and economical implications. Separ Purif Methods 2004, 36:77.
  • 29. Shen J, Zhang J, Zuo Y. Biodegradation of 2,4,6-trinitrophenol by Rhodococcus sp. isolated from a picric acid-contaminated soil. J Haz Mat 2009, 163:1199-1206.
  • 30. Podlipná R, Pospíšilová B, Vaněk T. Biodegradation of 2,4-dinitrotoluene by different plant species. Ecotoxicol Environ Saf 2015, 112:54-59.
  • 31. Singh RL, Singh PK, Singh RP. Enzymatic decolorization and degradation of azo dyes – A review. Int Biodeterior 2015, 104:21-31.
  • 32. Claus H. Microbial degradation of 2,4,6-Trinitrotoluene in vitro and in natural environments. Environmental science and engineering biological remediation of explosive residues. Environ Sci Eng 2013, 15-38.
  • 33. Zhao C, Zhang Y, Li X. Biodegradation of carbazole by the seven Pseudomonas sp. strains and their denitrification potential. J Haz Mat 2011, 190:253-259.
  • 34. Lenke H, Knackmuss HJ. Initial hydrogenation during catabolism of picric acid by Rhodococcus erythropolis HL 24-2, Appl Environ Microbiol 1992, 58:2933-2937.
  • 35. Kulkarni M, Chaudhari A. Microbial remediation of nitro-aromatic compounds: An overview. J Environ Manage 2007, 85:496-512.
  • 36. Gumuscu B, Tekinay T. Effective biodegradation of 2,4,6-trinitrotoluene using a novel bacterial strain isolated from TNT-contaminated soil. Int Biodeterior 2013, 85:35-41.
  • 37. Lin H, Chen Z, Megharaj M, Naidu R. Biodegradation of TNT using Bacillus mycoides immobilized in PVA–sodium alginate–kaolin. App Clay Sci 2013, 83-84:336-342.
  • 38. Zhang C, Xu W, Yan P. Overcome the recalcitrance of eucalyptus bark to enzymatic hydrolysis by concerted ionic liquid pretreatment. Process Biochem 2015, 50:2208-2214.
  • 39. Nousiainen P, Kontro J, Manner H. Phenolic mediators enhance the manganese peroxidase catalyzed oxidation of recalcitrant lignin model compounds and synthetic lignin. Fungal Genet Biol 2014, 72:137-149.
  • 40. Baker PW, Charlton A, Hale MD. Increased delignification by white rot fungi after pressure refining Miscanthus. Biores Tech 2015, 189:81-86.
  • 41. Spain J. Biodegradation of nitroaromatic compounds. Ann Rev Microbiol 1995, 49:523-555.
  • 42. Panz K, Miksch K. Phytoremediation of explosives (TNT, RDX, HMX) by wild-type and transgenic plants. J Environ Manage 2012, 113:85-92.
  • 43. Vila M, Lorber-Pascal S, Rathahao E, Debrauwer L, Canlet C, Laurent F. Metabolism of [14C]-2,4,6-Trinitrotoluene in tobacco cell Suspension culture. Environ Sci Technol 2015, 39:663-672.
  • 44. Chaparro J. Phytoremediation of explosives. http://rydberg.biology.colostate.edu/phytoremediation/2012/Phytoremediation%20of%20Explosives%20by%20Jacqueline%20Chaparro.pdf
  • 45. Nepovim A, Hebner A, Soudek P, Gerth A, Thomas H, Smrcek S, Vanek T. Degradation of 2,4,6-trinitrotoluene by selected helophytes. Chemosphere 2005, 60:1454-1461.
  • 46. 1Pavlostathis SG, Comstock KK, Jacobson ME, Saunders FM. Transformation of 2,4,6-trinitrotoluene by the aquatic plant Myriophyllum spicatum. Environ Toxicol Chem 1998, 17:2266-2273.
  • 47. Hannink NK, Subramanian M, Rosser SJ. Enhanced transformation of TNT by tobacco plants expressing a bacterial nitroreductase. Int J Phytoremediat 2007, 9:385-401.
  • 48. Strand SE, Doty SL, Bruce N. Engineering transgenic plants for the sus-tained containment and in situ treament of energetic materials. SERDP Project ER-1318, 2009 Final Report.
  • 49. Travis ER, Hannink NK, van Der Gast CJ, Thompson IP, Rosser SJ, Bruce NC. Impact of transgenic tobacco on trinitrotoluene (TNT) contaminated soil community. Environ Sci Technol 2007, 41:5854-5861.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ce2bea87-733d-4854-a987-081bd889de1f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.