PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

New Methodology for Predicting the Cracking Phenomenon in the Radial Extrusion Process of Hollow Parts with a Flange

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The selected issue of flange cracking in the radial extrusion process of hollow parts has been discussed in this paper. The researches were carried out based on numerical calculations in the Deform 3D software and experimental tests, which were carried out using pipe billets made of aluminum alloy EN AW 6063. A new methodology has been developed that allows to determine the place and approximate moment of material cohesion loss. This is determined from the results of the FEM calculation only, and does not require calibration tests. The method is based on a detailed analysis of the state of stress, state of strain in the forging, and is focused on identifying zones with an uneven distribution of the mentioned parameters. Determination of characteristic zones with a zero increase in the strain effective value makes it possible to determine, with a high approximation, the maximum (due to the phenomenon of cracking) diameter of the flange. The results of numerical calculations showed a high agreement with the results of experimental tests, in which the maximum diameter of the flange was determined.
Słowa kluczowe
Twórcy
  • Lublin University of Technology, 38D Nadbystrzycka Str., 20-618 Lublin, Poland
  • Lublin University of Technology, 38D Nadbystrzycka Str., 20-618 Lublin, Poland
Bibliografia
  • 1. Ma Y., Qin Y., Balendra R. Upper-bound analysis of the pressure-assisted injection forging of thick walled tubular components with hollow flanges. International Journal of Mechanical Sciences 2006; 48: 1172–1185.
  • 2. Ma Y., Qin Y., Balendra R. Forming of hollow gear-shafts with pressure-assisted injection forging (PAIF). Journal of Materials Processing Technology 2005; 167: 294–301.
  • 3. Qin Y., Ma Y., Balendra R. Pressurising materials and process design considerations of the pressure-assisted injection forging of thick-walled tubular components. Journal of Materials Processing Technology 2004; 150: 30–39.
  • 4. Szala M., Winiarski G., Bulzak T., Wójcik Ł. Microstructure and hardness of cold forged 42CrMo4 steel hollow component with the outer flange. Advances in Science and Technology Research Journal 2022; 16(4): 201–210.
  • 5. Lin S.Y., Lin F.C. Predictions of the minimum relative depth of die cavity and the minimum amount of preforming in the radial extrusion of tubular components. Computers & Structures 2006; 84(7): 503–513.
  • 6. Winiarski G., Gontarz A., Samołyk G. Theoretical and experimental analysis of a new process for forming flanges on hollow parts. Materials 2020; 13(4088).
  • 7. Gronostajski Z., Pater Z., Madej L., Gontarz A., Lisiecki L., Lukaszek-Solek A., Luksza J., Mróz S., Muskalski Z., Muzykiewicz W., Pietrzyk M., Sliwa R.E., Tomczak J., Wiewiórowska S., Winiarski G., Zasadzinski J., Ziólkiewicz S. Recent development trends in metal forming. Archives of Civil and Mechanical Engineering 2019; 19: 898–941.
  • 8. Zhan M., Ch. Gu, Zhiqiang J., Lijin H., He Y. Application of ductile fracture criteria in spin-forming and tube-bending processes. Computational Materials Science 2009; 47: 353–365.
  • 9. Xunzhong G., Fuye M., Qun G., Xinyi L., Naksoo K., Kai J. A calculating method of tube constants of ductile fracture criteria in tube free bulging proces based on M-K theory. International Journal of Mechanical Sciences 2017; 128–129: 140–146.
  • 10. Li H., Fu M.W., Lu J., Yang H. Ductile fracture: Experiments and computations. International Journal of Plasticity 2011; 27: 147–180.
  • 11. Walczuk-Gągała P., Pater Z., Wójcik Ł. Determination of the value of the damage function in 1050A aluminium alloy. Advances in Science and Technology Research Journal 2020; 14(2): 49–55.
  • 12. Pater Z., Tomczak J., Bulzak T., Wójcik Ł., Walczuk-Gągała P. Rotational compression of cylindrical specimen as a new calibrating test for damage criteria. Materials 2020; 13(740).
  • 13. Pater Z., Gontarz A., Tomczak J., Bulzak T., Wójcik Ł. Determination of the critical value of material damage in a cross wedge rolling test. Materials 2021; 14(1586).
  • 14. Pater Z., Tomczak J., Bulzak T., Wójcik Ł., Skripalenko M. M. Prediction of ductile fracture in skew rolling processes. International Journal of Machine Tools & Manufacture 2021; 163(103706).
  • 15. Pater Z., Tomczak J., Bulzak T., Knapiński M., Sawicki S., Laber K. Determination of the critical damage for 100Cr6 steel under hot forming conditions. Engineering Failure Analysis 2021; 128(105588).
  • 16. Pater Z., Tomczak J., Bulzak T., Zniszczyński A. The problem of material fracture prediction in cross rolling processes. Advances in Science and Technology Research Journal 2018; 12(4): 184–189.
  • 17. Pater Z., Tomczak J., Bulzak T., Wójcik Ł., Walczuk P. Assessment of ductile fracture criteria with respect to their application in the modeling of cross wedge rolling. Journal of Materials Processing Technology 2020; 278(116501).
  • 18. Wierzbicki T., Bao Y., Lee Y. W., Bai Y. Calibration and evaluation of seven fracture models. International Journal of Mechanical Sciences 2005; 47: 719–743.
  • 19. Lou Y., Huh H. Prediction of ductile fracture for advanced high strength steel with a new criterion: experiments and simulation. Journal of Materials Processing Technology 2013; 213: 1284–1302.
  • 20. Pater Z., Tomczak J., Bulzak T., Walczuk-Gągała P. Novel damage calibration test based on cross wedge rolling. Journal of Materials Research and Technology 2021; 13: 2016–2025.
  • 21. Pater Z., Tomczak J., Bulzak T., Wójcik Ł., Lis K. Rotary compression in tool cavity- a new ductile fracture calibration test.The International Journal of Advanced Manufacturing Technology 2020; 106: 4437–4449.
  • 22. Pater Z., Tomczak J., Bulzak T. Rotary compression as a new calibration test for prediction of a critical damage value. Journal of Materials Research and Technology 2020; 9(3): 5487–5498.
  • 23. Bulzak T., Pater Z., Tomczak J. Validation of a new system for measuring material constants represent- ing damage limits, Measurement 2022; 196(111265).
  • 24. Pater Z., Gontarz A. Critical damage values of R200 and 100Cr6 steels obtained by hot tensile testing. Materials 2019; 12(1011).
  • 25. Watanabe A., Fujikawa S., Ikeda A., Shiga N. Prediction of ductile fracture in cold forging. Procedia Engineering 2014; 81: 425–430.
  • 26. Samołyk G. Studies on stress and strain state in cold orbital forging a AlMgSi alloy flange pin. Ar -chives of Metallurgy and Materials 2013; 58(4): 1183–1189.
  • 27. Pater Z., Tomczak J., Bulzak T., Bartnicki J., Tofil A. Prediction of crack formation for cross Wedge rolling of harrow tooth preform. Materials 2019; 12(2287).
  • 28. Pater Z., Tomczak J., Bulzak T. Establishment of a new hybrid fracture criterion for cross wedge rolling. International Journal of Mechanical Sciences 2020; 167(105274).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ce2a4cd7-f458-4df6-a257-c5c4e8551601
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.