Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The purpose of this paper is to propose a new numerical technique called the natural decomposition method (NDM) for solving fractional Bratu’s initial value problems (FBIVP) in the Caputo and Caputo-Fabrizio sense. The NDM is a combined form of the natural transform method and the Adomian decomposition method. The numerical example is provided in order to validate the efficiency and reliability of the proposed method. The obtained results reveal that the proposed method is a very efficient and simple tool for solving fractional differential equations.
Rocznik
Tom
Strony
43--56
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
- Laboratory of Fundamental and Numerical Mathematics Departement of Mathematics, Faculty of Sciences Ferhat Abbas S´etif University 1, 19000 S´etif, Algeria
autor
- Laboratory of Fundamental and Numerical Mathematics Departement of Mathematics, Faculty of Sciences Ferhat Abbas S´etif University 1, 19000 S´etif, Algeria
Bibliografia
- [1] Syam, M.I., & Hamdan, A. (2006). An efficient method for solving Bratu equations. Appl. Math. Comput., 176(2), 704-713.
- [2] Buckmire, R. (2004). Application of a Mickens finite-difference scheme to the cylindrical Bratu-Gelfand problem. Numer. Methods Partial Differential Equations, 20(3), 327-337.
- [3] Jafari, H., & Tajadodi, H. (2016). Electro-spunorganic nanofibers elaboration process investigations using BPs operational matrices. Iranian Journal of Mathematical Chemistry, 7(1), 19-27.
- [4] Wazwaz, A.M. (2005). Adomian decomposition method for a reliable treatment of the Bratu-type equations. Appl. Math. Comput., 166, 652-663.
- [5] Batiha, B. (2010). Numerial solution of Bratu-type equations by the variational iteration method. Hacet. J. Math. Stat., 39(1), 23-29.
- [6] Feng, X., He, Y., & Meng, J. (2008). Application of homotopy perturbation method to the Bratu-type equations. Topol. Methods Nonlinear Anal., 31, 243-252.
- [7] Hassan, H.N., & Semary, M.S. (2013). Analytic approximate solution for the Bratu’s problem by optimal homotopy analysis method. Commun. Numer. Anal., 2013, 1-14.
- [8] Deniz, S., & Bildik, N. (2018). Optimal perturbation iteration method for Bratu-type problems. Journal of King Saud University Science, 30(1), 91-99.
- [9] Abbasbandy, S., Hashemia, M.S., & Liu, C-S. (2011). The Lie-group shooting method for solving the Bratu equation. Commun. Nonlinear Sci. Numer. Simul., 16(11), 4238-4249.
- [10] Khalouta, A., & Kadem, A. (2019). A new numerical technique for solving Caputo time-fractional biological population equation. AIMS Mathematics, 4(5), 1307-1319.
- [11] Khalouta, A., & Kadem, A. (2019). A new representation of exact solutions for nonlinear time-fractional wave-like equations with variable coefficients. Nonlinear Dyn. Syst. Theory, 19(2), 319-330.
- [12] Bildik, N., & Deniz, S., (2020). New approximate solutions to the nonlinear Klein-Gordon equations using perturbation iteration techniques. Discrete Contin. Dyn. Syst. Ser. S, 13(3), 503-518.
- [13] Bildik, N., & Deniz, S., (2019). A new fractional analysis on the polluted lakes system. Chaos Solitons Fractals, 122, 17-24.
- [14] Yavuz, M. (2018). Novel recursive approximation for fractional nonlinear equations within Caputo-Fabrizio operator. ITM Web of Conferences, 22, 01008.
- [15] Yavuz, M., & Özdemir, N. (2018). European vanilla option pricing model of fractional order without singular kernel. Fractal and Fractional, 2(1), 1-11.
- [16] Yavuz, M., & Özdemir, N. (2020). Analysis of an epidemic spreading model with exponential decay law. Mathematical Sciences & Applications E-Notes, 8(1), 1-13.
- [17] Yavuz, M., & Özdemir, N. (2020). Comparing the new fractional derivative operators involving exponential and Mittag-Leffler kernel. Discrete Contin. Dyn. Syst. Ser. S, 13(3), 995-1006.
- [18] Keten, A., Yavuz, M., & Baleanu, D. (2019). Nonlocal Cauchy problem via a fractional operator involving power kernel in Banach spaces. Fractal and Fractional, 3(2), 27, 1-8.
- [19] Kilbas, A., Srivastava, H.M., & Trujillo, J.J. (2006). Theory and Application of Fractional Differential Equations. Amsterdam: Elsevier.
- [20] Caputo, M., & Fabrizio, M. (2015). A new definition of fractional derivative without singular kernel. Progress in Fractional Differentiation and Applications, 1(2), 73-85.
- [21] Losada, J., & Nieto, J.J. (2015). Properties of a new fractional derivative without singular kernel. Progress in Fractional Differentiation and Applications, 1(2), 87-92.
- [22] Belgacem, F.B.M., & Silambarasan, R. (2012). Theory of natural transform. Mathematics in Engineering, Science and Aerospace, 3(1), 105-135.
- [23] Khalouta, A., & Kadem, A. (2019). New technique for finding exact solution of nonlinear time-fractional wave-like equation with variable coefficients. Proc. Inst. Math. Natl. Acad. Sci. Ukr. Math. Appl., 45(2), 167-180.
- [24] Zhu, Y., Chang, Q., & Wu, S. (2005). A new algorithm for calculating Adomian polynomials. Appl. Math. Comput., 169, 402-416.
- [25] Khalouta, A., & Kadem, A. (2020). Solution of the fractional Bratu-type equation via fractional residual power series method. Appear in: Tatra Mt. Math. Publ.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ce28253d-5fa7-447e-8dee-7bab8d3b251f