PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Physicochemical study of dye removal using electro-coagulation-flotation process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The performance of electro-flotation with aluminum electrodes for the removal of different dyes from synthetic aqueous solutions and real wastewater was studied. Parameters affecting the electro-coagulation-flotation process, such as pH, initial dye concentration, treatment time and temperature were investigated. The maximum dye removal from synthetic solutions was achieved at pH 7. The order of the dye removals is nonionic>cationic>anionic. The removal process follows pseudo first-order kinetics and the adsorption follows both physical and chemical adsorptions which is exothermic. Negative values of entropy change, ΔS°, and Gibbs free energy change, ΔG°, indicate that this adsorption process is spontaneous and less favorable at high temperatures. Treatment of a real wastewater from textile dyeing factory showed that the removal efficiency was ranging between 92-99% for all constituents. The energy consumption is 0.0167 kWh/dm3.
Rocznik
Strony
321--333
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
  • Ain Shams University, Faculty of Science, Cairo, Egypt
  • Central Metallurgical Research & Development Institute (CMRDI), Cairo, Egypt
autor
  • Central Metallurgical Research & Development Institute (CMRDI), Cairo, Egypt
autor
  • Central Metallurgical Research & Development Institute (CMRDI), Cairo, Egypt
Bibliografia
  • ABDEL KHALEK, M.A., PAREKH, B.K., 2003. Separation of ultra-fine wood particles from waste water to prevent water pollution. Afinidad, 60(503), 71-75.
  • ADHOUM, N., MONSER, L., 2004. Decolourization and removal of phenolic compounds from olive mill wastewater by electrocoagulation. Chemical Engineering and Processing, 43, 1281-1287.
  • AHMED, S.N., SHREESHIVADASAN, C., ZURIATI, Z., SAAD, A.A., 2015. Treatment Performance of Textile Wastewater Using Electrocoagulation Process under Combined Electrical Connection of Electrodes. Int. J. Electrochem. Sci., 10, 5924-5941
  • AKSU, Z., KABASAKAL, E., 2004. Batch adsorption of 2,4-dichlorophenoxy-acetic acid (2,4-D) from aqueous solution by granular activated carbon. Sep. Purif. Technol., 35, 223–240.
  • ALKAN, M., DEMIRBAS, O., CELIKCAPA, S., DOGAN, M., 2004. Sorption of acid red 57 from aqueous solution onto sepiolite. J. Hazard. Mater., 116, 135–145.
  • AL-SHANNAG, M., LAFI, W., BANI-MELHEM, K., GHARAGHEER, F., DHAIMAT, O., 2012. Reduction of COD and TSS from Paper Industries Wastewater Using Electro-Coagulation and Chemical Coagulation. Sep. Sci. Technol., 47(5), 700.
  • APHA, 1992. Standard Methods for Examination of Water and Wastewater. 17th Ed. Washington DC.
  • AZAM, P., MOHAMMAD, E.O., 2014. Removal of Dye from Industrial Wastewater with an Emphasis On Improving Economic Efficiency and Degradation Mechanism. Journal of Saudi Chemical Society, 6, 1–8.
  • BASIRI PARSA J., REZAEI VAHIDIAN, H., SOLEYMANI, A.I.R., ABBASI, M., 2011. Removal of Acid Brown 14 In Aqueous Media by Electrocoagulation: Optimization Parameters and Minimizing of Energy Consumption. Desalination, 278, 295-302.
  • CHEN, G., 2004. Electrochemical Technologies in Wastewater Treatment. Separation and Purification Technology, 38(1), 11-41.
  • CLECERI, L.S., GREENBERG, A.E., EATON, A.D., 1998. Standard Methods for the Examination of Water and Wastewater. 20th Ed., American Public Health Association, USA, Washington DC.
  • CRINI, G., 2006. Non-Conventional Low-Cost Adsorbents for Dye Removal: A Review. Bioresour. Technol., 97, 1061.
  • DEMIRAL, H., DEMIRAL, I., TUMSEK, F., KARABACAKOGLU, B., 2008. Adsorption of Chromium (VI) From Aqueous Solution by Activated Carbon Derived from Olive Bagasse and Applicability of Different Adsorption Models. Chem. Eng. J., 144, 188-196.
  • EL-HAMSHARY, H., EL-SIGENY, S., 2007. Removal of Phenolic Compounds Using (2-Hydroxyethyl Methacrylate/ Acrylamidopyridine) Hydrogel Prepared by Gamma Radiation. Sep. Purif. Technol., 57, 329–337.
  • ELKSIBI, I., HADDAR, W., TICHA, M.B., GHARBI, R., MHENNI, M., 2014. Development and Optimization of a Nonconventional Extraction Process of Natural Dye from Olive Solid Waste Using Response Surface Methodology (RSM). Food Chem., 161, 345-352.
  • GARG, V.K., AMITA, M., KUMAR, R., GUPTA, R., 2004. Basic Dye (Methylene Blue) Removal from Simulated Wastewater by Adsorption Using Indian Rosewood Sawdust: A Timber Industry Waste. Dyes and Pigments, 63(3), 243-250.
  • HUNSOM, M., PRUKSATHORNA, K., DAMRONGLERDA, S., VERGNESB, H., DUVERNEUILB, P., 2005. Electrochemical Treatment of Heavy Metals (Cu2+, Cr6+, Ni2+) From Industrial Effluent and Modeling of Copper Reduction. Water Res., 39, 610-616.
  • JIANG, J., GRAHAM, N., ANDRE, C., KELSALL, G.H., BRANDON, N., 2002. Laboratory Study of Electro-Coagulation–Flotation for Water Treatment. Water Res., 36, 4064-4078.
  • KONSTANTINOS, D., ACHILLEAS, C., EVGENIA, V., 2011. Removal of Nickel, Copper, Zinc and Chromium from Synthetic and Industrial Wastewater by Electro-Coagulation. International Journal of Environmental Science, 1(5), 697-710.
  • BHATTACHARYYA, K.G., GUPTA, S.S., 2006. Adsorption of Fe(III) from water by natural and acid activated clays: Studies on equilibrium isotherm, kinetics and thermodynamics of interactions. Adsorption, 12, 185–204.
  • LEMLIKCHI, W., KHALDI, S., MECHERRI, M.O., LOUNICI, H., DROUICHE, N., 2012. Degradation of Disperse Red 167 Azo Dye by Bipolar Electrocoagulation. Sep. Sci. Technol., 47(11), 1682.
  • MAHMOODI, N.M., ARAMI, M., 2009. Numerical Finite Volume Modeling of Dye Decolorization Using Immobilized Titania Nanophotocatalysis. Chem. Eng. J., 146(2), 189–193.
  • MARTELL, A.E., SMITH, R.M., 1977. The Oxidation of Cobalt (II) Adsorbed On Manganese Dioxide. Cosmochim. Acta., 43, 781–787.
  • MOHORA, E., RONCEVIĆ, S., DALMACIJA, B., AGBABA, J., WATSON, M., KARLOVIĆ, E., DALMACIJA, M., 2012. Removal of Natural Organic Matter and Arsenic from Water by Electrocoagulation/Flotation Continuous Flow Reactor. J. Hazard. Mater., 2(6), 257-264.
  • MORSI, M.S., AL-SARAWY, A.A., SHEHAB EL-DEIN, W.A., 2011. Electrochemical Degradation of Some Organic Dyes by Electrochemical Oxidation On a Pb/Pbo2 Electrode. Desal. Water Treat., 26(1–3), 301.
  • MUTHUKUMAR, M., GOVINDARAJA, M., MUTHUSAMY, A., RAJU, G.B., 2010. Comparative Study of Electro-Coagulation and Electro-Oxidation Processes for The Degradation of Ellagic Acid from Aqueous Solution. Sep. Sci. Technol., 46(2), 272.
  • NANDI, B.K., PATEL, S., 2017. Effects of Operational Parameters On The Removal Of Brilliant Green Dye From Aqueous Solutions By Electrocoagulation. Arabian J. Chem., 10, S2961-S2968.
  • OTHMAN, A.H., CHMIELEWSKI, H. J., 2010, Materials Useful in Making Cellulosic Acquisition Fibers in Sheet Form. Patent EP1675556A4, Rayonier Prod & Fncl Serv Co.
  • PATIL, B.N., NAIK, D.B., SHRIVASTAVA, V.S., 2011. Photocatalytic Degradation of Hazardous Ponceau-S Dye from Industrial Wastewater. Desalination, 269(1–3), 276–283.
  • PEREZ-MARIN, A.B., MESEGUER ZAPATA, V., ORTUNO, J.F., AGUILAR, M., SAEZ, J., LLORENS, M., 2007. Removal of cadmium from aqueous solutions by adsorption onto orange waste. J. Hazard. Mater., B139, 122–131.
  • PIRKARAMIA, A., OLYA, M.E., LIMAEE, N.Y., 2013. Decolorization of Azo Dyes by Photo Electro Adsorption Process Using Polyaniline Coated Electrode. Prog. Org. Coat., 76, 682–688.
  • SAHU, O., MAZUMDAR B., CHAUDHARI, P.K., 2014. Treatment of Wastewater by Electrocoagulation: A Review. Environ. Sci. Pollut. Res., 21, 2397-2413.
  • CHATURVEDI, S.I., 2013. Electrocoagulation: A Novel Waste Water Treatment Method. International Journal of Modern Engineering Research (IJMER), 3(1), 93-100.
  • SHAH, V., MADAMWAR, D., 2013. Community Genomics: Isolation, Characterization and Expression of Gene Coding for Azoreductase. Int. Biodeter. Biodegrad., 79(4), 1–8.
  • SLEIMAN, M., VILDOZO, D., FERRONATO, C., CHOVELON, J.M., 2007. Photocatalytic Degradation of Azo Dye Metanil Yellow: Optimization and Kinetic Modeling Using a Chemometric Approach. Appl. Catal. B: Environ., 77(1-2), 1–11.
  • THIRUGNANASAMBANDHAM, K., SIVAKUMAR, V., MARAN, J. P., 2014. Efficiency of Electrocoagulation Method to Treat Chicken Processing Industry Wastewater - Modeling and Optimization. J. Taiwan Inst. Chem. Eng., 45, 2427-2435.
  • THIRUGNANASAMBANDHAM, K., SIVAKUMAR, V., MARAN, J.P., 2013. Optimization of Electrocoagulation Process to Treat Biologically Pretreated Bagasse Effluent. J. Serb. Chem. Soc., 78, 613-626.
  • VASUDEVAN, S., OTURAN, M.A., 2014. Electrochemistry: As Cause and Cure in Water Pollution–An Overview. Environ. Chem. Lett., 12, 97-108.
  • VILLE, K., TOIVO, K., JAAKKO, R., ULLA, L., 2013. Recent Applications of Electrocoagulation in Treatment of Water and Wastewater. Green and Sustainable Chemistry, 3, 89-121.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ce2600d7-fafa-4d07-a355-43575eae4726
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.