PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Przegląd metod ogrzewania nawierzchni drogowych

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Review of road pavement heating methods
Języki publikacji
PL
Abstrakty
PL
Kluczowym aspektem utrzymania zimowego dróg jest usuwanie śliskości zimowej. W artykule przedstawiono przegląd metod ogrzewania nawierzchni będących alternatywą dla standardowych sposobów radzenia sobie ze śniegiem i lodem. Przenalizowano ogrzewanie: hydrauliczne, elektryczne, mikrofalowe oraz indukcyjne. Przedstawiono badania i realizacje poszczególnych metod.
EN
The main aspect of winter maintenance is removing winter slipperiness. The paper presents an overview of pavement heating methods that are an alternative to standard methods of dealing with snow and ice. Hydraulic, electric, microwave and induction heating was analyzed. The research and implementation of individual methods were presented.
Słowa kluczowe
Rocznik
Strony
8--13
Opis fizyczny
Bibliogr. 29 poz., rys.
Twórcy
Bibliografia
  • [1] Zarządzenie nr 31 Generalnego Dyrektora Dróg Krajowych i Autostrad z dnia 5 września 2017 roku w sprawie wprowadzenia „Wytycznych zimowego utrzymania dróg”.
  • [2] Mazur N. Wpływ soli do odladzania dróg na środowisko przyrodnicze. Inżynieria i Ochrona Środowiska, 2015, T. 18, nr 4, s. 449–458
  • [3] Fay L. et al. Manual of Environmental Best Practices for Snow and Ice Control. Minnesota Dep. Transp., 2015, vol. 5, no. June, [Online] Available: www.clearroads.org.
  • [4] Shi X., Du S., Fay L. Environmental Risks of Snow and Ice Control Materials. Sustainable Winter Road Operations, 2018, pp. 180–210, doi: 10.1002/9781119185161.ch10.
  • [5] LUND J. W. Reconstruction of a Pavement Geothermal Deicing System. Geo-Heat Center Quarterly Bulletin, 1999, Vol. 20, No. 1, Klamath Falls, OR, pp. 14-17
  • [6] LUND J. W. Pavement Snow Melting. GHC Bulletin, 2000
  • [7] Japan for Sustainability webpage, Summer Solar Heat Stored in Ground for Snow Melting during Winter, 2007 [dokument elektroniczny – online]. https://www.japanfs.org/en/news/archives/news_id026795.html
  • [8] RAGNARSSON Á., STEINGRIMSSON B., THORHALLSSON S. Geothermal Development in Iceland 2015-2019, Proceedings World Geothermal Congress 2020, Reykjavik, Iceland
  • [9] Zhao W., Zhang Y., Chen X., Su W., Li B., Fu Z. Experimental heating performances of a ground source heat pump (GSHP) for heating road unit. Energy Conversion and Management: X, Volume 7, 2020, 100040, https://doi.org/10.1016/j.ecmx.2020.100040
  • [10] Dawson A. R., Dehdezi P. K., Hall M. R., Wang J., Isola R. Enhancing thermal properties of asphalt materials for heat storage and transfer applications. Road Materials and Pavement Design., 2012, vol. 13, no. 4, pp. 784–803, doi:10.1080/14680629.2012.735791
  • [11] Mirzanamadi R., Hagentoft C. E., Johansson P., Johnsson J. Anti-icing of road surfaces using Hydronic Heating Pavement with low temperature. Cold Regions Science and Technology, 2018, vol. 145, pp.106–118, doi: 10.1016/j.coldregions.2017.10.006
  • [12] Pan P., Wu S., Xiao Y., Liu G. Areview on hydronic asphalt pavement for energy harvesting and snow melting. Renewable and Sustainable Energy Reviews, 2015, Volume 48, Pages 624-634, https://doi.org/10.1016/j.rser.2015.04.029
  • [13] Ho I.-H., Li S., Abudureyimu S. Alternative hydronic pavement heating system using deep direct use of geothermal hot water. Cold Regions Science and Technology, 2019, Volume 160, Pages 194-208, https://doi.org/10.1016/j.coldregions.2019.01.014
  • [14] Zhao W., Chen X., Zhang Y., Su W., Xu F., Li B. Deicing performances of a road unit driven by a hydronic heating system in severely cold regions of China. Computers & Mathematics with Applications, 2021, Volume 81, Pages 838-850, https://doi.org/10.1016/j.camwa.2019.10.016
  • [15] Wang C., Fu H., Ma W., Zhang Z., Ji X., Han X. Combination design and performance evaluation of conductive bonding layer for asphalt pavement active deicing. Construction and Building Materials, 2020, Volume 263, 121037, https://doi.org/10.1016/j.conbuildmat.2020.121037
  • [16] Sugawara N., Hokari K., Watanabe T., Sugawara H. Energy saving characteristics of a new type of road-heating system. Atmospheric Research, 1998, Volume 46, Issues 1–2, Pages 113-122, https://doi.org/10.1016/S0169-8095(97)00034-3
  • [17] Rao R., Fu J., Chan Y., Tuan C. Y., Liu C. Steel fi ber confi ned graphite concrete for pavement deicing. Composites Part B: Engineering, 2018, Volume 155, Pages 187-196, https://doi.org/10.1016/j.compositesb.2018.08.013
  • [18] Pan P., Wu S., Xiao F., Pang L., Xiao Y. Conductive asphalt concrete: A review on structure design, performance, and practical applications. Journal of Intelligent Material Systems and Structures, 2015, Vol. 26(7) 755–769, doi: 10.1177/1045389X14530594
  • [19] Sassani A., Arabzadeh A., Ceylan H., Kim S., Sadati S., Gopalakrishnan K., Taylor P. C., Abdualla H. Carbon fi ber-based electrically conductive concrete for salt-free deicing of pavements. Journal of Cleaner Production, 2018, Volume 203, Pages 799-809, https://doi.org/10.1016/j.jclepro.2018.08.315
  • [20] Sun Y., Wu S., Liu Q., Hu J., Yuan Y., Ye Q. Snow and ice melting properties of self-healing asphalt mixtures with induction heating and microwave heating. Applied Thermal Engineering, 2018, Volume 129, Pages 871-883, https://doi.org/10.1016/j.applthermaleng.2017.10.050
  • [21] Liu J., Xu J., Lu S., Chen H. Investigation on dielectric properties and microwave heating efficiencies of various concrete pavements during microwave deicing. Construction and Building Materials, 2019, Volume 225, Pages 55-66, https://doi.org/10.1016/j.conbuildmat.2019.07.249
  • [22] Gulisano F., Gallego J., Trigos L., Apaza Apaza F. R., Dielectric characterisation of asphalt mortars for microwave heating applications. Construction and Building Materials, 2021, Volume 308, 125048, https://doi.org/10.1016/j.conbuildmat.2021.125048
  • [23] Gao J., Guo H., Wang X., Wang P., Wei Y., Wang Z., Huang Y., Yang B. Microwave deicing for asphalt mixture containing steel wool fibers. Journal of Cleaner Production, 2019, Volume 206, Pages 1110-1122, https://doi.org/10.1016/j.jclepro.2018.09.223.
  • [24] Xu C., Wang K., Li K., Zong Y. Deicing Property of Asphalt Mixture Containing SteelWool Fiber by Electromagnetic Induction Heating. Coatings, 2021, 11,1276. https://doi.org/10.3390/coatings11111276
  • [25] Liu K., Fu C., Dai D., Jin C., Li W., Li S., Xu X. Induction heating performance of asphalt pavements incorporating electrically conductive and magnetically absorbing layers. Construction and Building Materials, 2019, Volume 229, 116805, https://doi.org/10.1016/j.conbuildmat.2019.116805
  • [26] Liu Q., Chen C., Li B., Sun Y., Li H. Heating Characteristics and Induced Healing Efficiencies of Asphalt Mixture via Induction and Microwave Heating. Materials (Basel). 2018, 11(6):913doi:10.3390/ma11060913
  • [27] Asfour S., Bernardin F., Toussaint E., Piau J.-M., Hydrothermal modeling of porous pavement for its surface de-freezing. Applied Thermal Engineering, 2016, Volume 107, Pages 493-500, https://doi.org/10.1016/j.applthermaleng.2016.06.138.
  • [28] Lei G., Yu X., Li T., Habibzadeh-Bigdarvish O., Timothy Hurley M. Insulated PEXPipe Loops for Deicing on Existing Bridge Deck using Geothermal Energy: Laboratory Tests, Modeling, and Performance Analyses. Applied Thermal Engineering, 2021, doi: https://doi.org/10.1016/j.applthermaleng.2021.118028
  • [29] Xiang B., Yuan Y., Ji Y., Cao X., Zhou J. Thermal and electrical performance of a novel photovoltaic-thermal road. Solar Energy, 2020, Volume 199, Pages 1-18, https://doi.org/10.1016/j.solener.2020.02.021
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ce245559-695f-44b2-9ef2-b1bc820737a7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.