PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Nash equilibrium approach for multiobjective optimal control problems with elliptic partial differential equations

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We consider the generalized Nash equilibrium as a solution concept for multiobjective optimal control problems governed by elliptic partial differential equations with constraints not only for the control but also for the state variables. In the first part, we present a constructive proof of the existence of a generalized Nash equilibrium via an approximating sequence of suitable finite dimensional discretizations. In the second part, we propose a variant of a potential reduction algorithm for the numerical solution of these discretized problems. In contrast to the existing numerical approaches ours does not require the computation of the control–to–state mapping. Instead we introduce different state variables and guarantee that they become equal at a solution. We prove sufficient conditions for the convergence of our algorithm to a solution. Furthermore, some numerical results showing the applicability are provided.
Rocznik
Strony
457--482
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
autor
  • Universit¨at der Bundeswehr Mu¨nchen, Department of Aerospace Engineering, Werner-Heisenberg Weg 39, 85577 Neubiberg, Germany
Bibliografia
  • [1] Arrow, K.J. and Debreu, G. (1954) Existence of an equilibrium for a competitive economy. Econometrica 22, 265–290.
  • [2] Berge, C. (1963) Topological Spaces. Oliver and Boyd, Edinburgh/London.
  • [3] Borzi, A. and Kanzow, C. (2013) Formulation and numerical solution of Nash equilibrium multiobjective elliptic control problem. SIAM J. Control Optim. 51, 718–744.
  • [4] Cottle, R.W., Pang, J.-S. and Stone, R.E. (1992) The Linear Complementarity Problem. Academic Press, Boston.
  • [5] Dreves, A., Facchinei, F., Fischer, A. and Herrich, M. (2014) A new error bound result for generalized Nash equilibrium problems and its algorithmic application. Comput. Optim. Appl. 59, 63–84.
  • [6] Dreves, A., Facchinei, F. Kanzow, C. and Sagratella, S. (2011) On the solution of the KKT conditions of generalized Nash equilibrium problems. SIAM J. Optim. 21, 1082–1108.
  • [7] Dreves, A. and Gwinner, J. (2016) Jointly convex generalized Nash equilibria and elliptic multiobjective optimal control. J. Optim. Theory Appl. 168, 1065–1086.
  • [8] Facchinei, F. and Kanzow, C. (2007) Generalized Nash Equilibrium Problems. 4OR, 5, 173–210.
  • [9] Facchinei, F., Kanzow, C. and Sagratella, S. (2014) Solving quasivariational inequalities via their KKT-conditions. Math. Program. 144, 369–412.
  • [10] Haslinger, J. and Neittaanm¨aki, P. (1996) Finite Element Approximation for Optimal Shape, Material and Topology Design. John Wiley & Sons, England, 2nd edition.
  • [11] Hinterm¨uller, M. and Surowiec, T. (2013) A PDE-constrained generalized Nash equilibrium problem with pointwise control and state constraints. Pac. J. Optim. 9 (2), 251–273.
  • [12] Hinterm¨uller, M., Surowiec, T. and K¨ammler, A. (2015) Generalized Nash equilibrium problems in Banach spaces: Theory, Nikaido-Isodabased path-following methods, and applications. SIAM J. Optim. 25 (3), 1826–1856.
  • [13] Hinze, M., Pinnau, R., Ulbrich, M. and Ulbrich, S. (2009) Optimization with PDE constraints. Math. Model. Theory Appl. 23, Springer, New York.
  • [14] Hogan, W.W. (1973) Point-to-set maps in mathematical programming. SIAM Review 15, 591–603.
  • [15] Ichiishi, T. (1983) Game Theory for Economic Analysis. Academic Press, New York. Lions, J.L. (1986) Controle de Pareto de systemes distribues: Le cas d’´evolution. Comptes Rendus de L’Acad´emie des Sciences, Serie I, 302, 413–417.
  • [16] Liu, G.P., Yang, J.B. and Whidborne, J.F. (2001) Multiobjective Optimisation and Control. Research Studies Press LTD.
  • [17] Meyer, C. and R¨osch, A. (2004) Superconvergence properties of optimal control problems. SIAM J. Control Opt. 43, 970–985.
  • [18] Monteiro, R.D.C. and Pang, J.S. (1999) A potential reduction Newton method for constrained equations. SIAM J. Optim. 9, 729–754.
  • [19] Ramos, A.M., Glowinski, R. and Periaux, J. (2002a) Nash equilibria for the multiobjective control of linear partial differential equations. J. Optim. Theory Appl. 112, 457–498.
  • [20] Ramos, A.M., Glowinski, R. and Periaux, J. (2002b) Pointwise control of the Burgers equation and related Nash equilibrium problems: Computational approach. J. Optim. Theory Appl. 112, 499–516.
  • [21] Ramos, A.M. and Roubicek, T. (2007) Nash Equilibria in Noncooperative PredatorPrey Games. Appl. Math. Optim. 56, 211–241.
  • [22] Rosch, A. (2006) Error estimates for linear-quadratic control problems with control constraints. Opt. Methods Softw. 21, 121–134.
  • [23] Troltzsch, F. (2010) Optimal Control of partial differential equations. Grad. Stud. Math. 112, AMS, Providence, RI. Translated from the 2005 German original by J. Sprekels.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ce239394-70d0-42b7-b9d4-ef4a0d69deb1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.