PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of frictional performance of deep drawing quality steel sheets used in automotive industry

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Ocena właściwości tarciowych blach stalowych głębokotłocznych stosowanych w przemyśle motoryzacyjnym
Języki publikacji
EN
Abstrakty
EN
This article presents the results of tribological tests of three grades of deep-drawing quality steel sheets used in the automotive industry. The frictional properties of the sheets were anaysed using a strip drawing test. Friction tests were performed under dry friction and lubrication conditions using machine oil L-AN 46. Additionally, friction tests of pre-strained sheets were also carried out. Cylindrical countersamples with different surface roughness were used. Relationship between the surface roughness, pressure force, lubrication conditions and the value of the friction coefficient were evaluated. It was found that increasing the roughness of the countersamples increased the value of the friction coefficient in both friction conditions analysed. The greater the pressure force, the lower efficiency of lubrication. The effectiveness of reducing the value of the friction coefficient ranged from 20-30% and depended on the pressure force, roughness of the countersamples and the degree of specimen pre-straining.
PL
W artykule przedstawiono wyniki badań tribologicznych trzech gatunków blach stalowych głębokotłocznych stosowanych w przemyśle motoryzacyjnym. Do oceny właściwości tarciowych blach wykorzystano test przeciągania pasa blachy. Testy tarcia przeprowadzono w warunkach tarcia suchego i smarowania olejem maszynowym L-AN 46. Dodatkowo przeprowadzono badania tarcia blach poddanych odkształceniu wstępnemu. Zastosowano przeciwpróbki walcowe o różnej chropowatości powierzchni. Pozwoliło to na określenie relacji pomiędzy chropowatością powierzchni, wartością nacisku, warunkami smarowania oraz wartością współczynnika tarcia. Stwierdzono, że zwiększenie chropowatości przeciwpróbek powodowało zwiększenie wartości współczynnika tarcia w obydwu zastosowanych warunkach tarcia. Im większa siła docisku tym efektywność smarowania olejem maszynowym zmniejszała się. Efektywność zmniejszania wartości współczynnika tarcia wahała się w zakresie 20-30% i zależała od siły nacisku, chropowatości przeciwpróbek oraz stopnia wstępnego odkształcenia próbek.
Twórcy
  • Rzeszow University of Technology, Faculty of Mechanical Engineering and Aeronautics, Department of Manufacturing Processes and Production Engineering, al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
autor
  • Institute of Technology and Material Engineering, Faculty of Mechanical Engineering, Technical University of Košice, Košice, Slovakia
Bibliografia
  • [1] Azushima Akira, Junji Miyamoto, Hideaki Kudo. 1998. „Effect of Surface Topography of Workpiece on Pressure Dependence of Coefficient of Friction in Sheet Metal Forming”. CIRP Annals 47 (1): 479, 482.
  • [2] Chodoła Łukasz, Daniel Ficek, Ireneusz Szczęsny, Tomasz Trzepieciński, Łukasz Wałek. 2021. “Modelling of the draw bead coefficient of friction in sheet metal forming”. Technologia i Automatyzacja Montażu 3: 3-9.
  • [3] Coello Juana, Valentin Miguel, Alberto Martínez, F. J. Avellaneda, A. Calatayud A. 2013. „Friction behaviour evaluation of an EBT zinc-coated trip 700 steel sheet through flat friction tests”. Wear 305: 129-139.
  • [4] Dharavath Baloji, Dinesh Varma, Swadesh K. Singh, M.T. Naik. 2021. Understanding frictional behaviour of ASS316L in sheet metal forming. Materialtoday: Proceedings 44: 2855-2858.
  • [5] Evin Emil, Miroslav Tomáš, Marek Výrostek. 2016. „Verification the numerical simulation of the strip drawing test by its physical model”. Acta Mechanica Slovaca 20 (1): 14-21.
  • [6] Figueiredo Luiz, Amilcar Ramalho, Marta C. Oliveira, Luís F. Menezes. 2011. „Experimental study of friction in sheet metal forming". Wear 271 (9-10): 1651-1657.
  • [7] Gåård Anders. 2018. „Wear in Sheet Metal Forming”. Licentiate Thesis. Karlstad: Kalstad University Studies.
  • [8] Han S.S. 1997. „The influence of tool geometry on friction behavior in sheet metal forming”. Journal of Materials Processing Technology 63 (1-3): 129-133.
  • [9] Holmberg Kenneth, Ali Erdemir 2017. „Influence of tribology on global energy consumption, costs and emissions”. Friction 5: 263-284.
  • [10] Jurkovic Martin, Zoran Jurkovic, Stipo Buljan. 2006. „The tribological state test in metal forming processes using experiment and modelling”. Journal of Achievements in Materials and Manufacturing Engineering 18 (1-2): 383-386.
  • [11] Kirkhorn Lanny, Kenneth Frogner, Mats Andersson, Jan-Eric Ståhl. 2012. „Improved tribotesting for sheet metal forming”. Procedia CIRP 3: 507-512.
  • [12] Kirkhorn Lanny, Volodymyr Bushlya, Mats Andersson, Ståhl. 2013. "The influence of tool steel microstructure on friction in sheet metal forming”. Wear 302 (1-2): 1268-1278.
  • [13] Kmiotek Małgorzata, Tomasz Iwan. 2021. „Numerical simulation of flow through microchannels of technical equipment with triangular and rectangular elements of roughness”. Technologia i Automatyzacja Montażu 4: 16-23.
  • [14] Makhkamov Anvar, Dipak Wagre, António M. Baptista, Abel D. Santos, Luís Malheiro. 2017. „Tribology testing to friction determination in sheet metal forming processes”. Ciência & Tecnologia dos Materiais 29 (1): e249-e253.
  • [15] Masters Lain G., David K. Williams, Rajat Roy. 2013. „Friction behaviour in strip draw test of pre-stretched high strength automotive aluminium alloys”. International Journal of Machine Tools Manufacture 73: 17-24.
  • [16] Menezes Pradeep L., Kishan Kumar, Kishore, Satish V. Kailas S.V. 2009. „Influence of friction during forming processes-a study using a numerical simulation technique”. International Journal of Advanced Manufacturing Technology 40: 1067-1076.
  • [17] Roizard Xavier, Jürgen von Stebut. 1995. „Surface asperity flattening in sheet metal forming - a 3D relocation stylus profilometric study”. International Journal of Machine Tools Manufacture 35: 169-175.
  • [18] Shisode Meghshyam, Javad Hazrati, Tanmaya Mishra, Matthijn de Rooij, Carel ten Horn, Jeroen van Beeck, Ton van den Boogaard. 2021. "Modeling boundary friction of coated sheets in sheet metal forming". Tribology International 153: 106554.
  • [19] Shisode Meghshyam P., Javad Hazrati, Tanmaya Mishra, Matthijn de Rooij, Ton van den Boogaard. 2020, „Modeling Mixed Lubrication Friction for Sheet Metal Forming Applications". Procedia Manufacturing 47: 586-590.
  • [20] Shisode Meghshyam, Javad Hazrati, Tanmaya Mishra, Matthijn de Rooij, Ton van den Boogaard. 2021. Journal of Materials Processing Technology 291: 117035.
  • [21] Szyszka Grzegorz, Daniel Kwiatanowski, Jarosław Sęp, Katarzyna Antosz. 2021. „Automatic compensation of errors of multi-task machines in the production of aero engine cases”. Technologia i Automatyzacja Montażu 1: 29-39.
  • [22] Trzepieciński Tomasz. 2019. „A study of the coefficient of friction in steel sheets forming”. Metals 9(9): 988.
  • [23] Trzepieciński Tomasz, Anna Bazan, Hirpa G. Lemu. 2015. “Frictional characteristics of steel sheets used in automotive industry”. International Journal of Automotive Technology 16 (5): 849-863.
  • [24] Trzepieciński Tomasz, Romuald Fejkiel. 2017. “On the influence of deformation of deep drawing quality steel sheet on surface topography and friction”. Tribology International 115: 78-88.
  • [25] Vierzigmann Ulrich H., Marion Merklein, Ulf Engel. 2011. „Friction conditions on sheet-bulk metal forming”. Procedia Engineering 19: 377-382.
  • [26] 1050 Vollertsen Frank. 2011. „Size effects in micro forming”. Key Engineering Materials 473: 3-12.
  • [27] Wang Chunge, Rui Ma, Juan Zhao, Jun Zhao. 2017. „Calculation method and experimental study of coulomb friction coefficient in sheet metal forming”. Journal of Manufacturing Processes 27: 126-137.
  • [28] Wang Dan, Yang He, Li Heng. 2014. „Advance and trend of friction study in plastic forming”. Transactions of Nonferrous Metals Society of China 24: 1263-1272.
  • [29] Zabala Alaitz, Eneko Sáenz de Argandoña, Daniel Cañizares, Iñigo Llavori, Nagore Otegi, Joseba Mendiguren. 2022. „Numerical study of advanced friction modelling for sheet metal forming: Influence of the die local roughness”. Tribology International 165: 107259.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ce22ce85-a129-4ab2-b98d-f174b930fd58
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.