PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of outlet system geometry on Tesla turbine working parameters

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents an analysis of the influence of Tesla turbine outlet system geometry on parameter distribution and power. Simulations were carried out with the aid of Ansys products: DesignModeler, Meshing and CFX 17.0. The model geometry was based on the dimensions of existing turbine. Three different types of outlet system were investigated. A mesh independence study was carried out in order to obtain results which were unaffected by discretization method. Computations were performed using experimental data. The flow phenomena occurring inside the turbine are described in addition to the differences caused by outlet system geometry. Numerical results were confronted with experimental analysis.
Słowa kluczowe
Twórcy
autor
  • Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland
Bibliografia
  • [1] N. Tesla, Turbine, Patent no: 1,061,206., United States Patent Office of New York N. Y. 1913
  • [2] E. Lemma, R.T. Deam, D. Toncich, R. Collins, Characterisation of a small viscous flow turbine, Experimental Thermal and Fluid Science 33 (2008) 96-105
  • [3] G.P. Hoya, A. Guha, The design of a test rig and study of the performance and efficiency of a Tesla disc turbine, J. Power and Energy 223 (2009) 451-465
  • [4] S. Sengupta, A. Guha, A Theory of Tesla disc turbines, Journal of Power and Energy 226(2012) 650-663
  • [5] P. Lampart, Ł. Jędrzejewski, Investigations of aerodynamics of Tesla bladeless turbine, Journal of Theoretical and Applied Mechanics 49 (2011) 477-499
  • [6] B.P. Ho-Yan, Tesla turbine for pico hydro applications, Guelph Engineering Journal 4 (2011) 1-8
  • [7] V.P. Carey, Assessment of Tesla turbine performance for small scale Rankine combined heat and power systems, Journal of Engineering for Gas Turbines and Power 132 (2010) 122301-1 – 122301-8
  • [8] S. Sengupta, A.Guha, Flow of a nanofluid in the microspacing within co-rotating discs of a Tesla turbine, Applied Mathematical Modelling 40 (2016), 485-499
  • [9] A.L. Neckel, M. Godinho, Influence of geometry on the efficiency of convergent – divergent nozzles applied to Tesla turbines, Experimental Thermal and Fluid Science 62 (2015) 131-140
  • [10] H. Gupta, S.P. Kodali, Design an operation of Tesla turbo machine – a state of the art review, International Journal of Advanced Transport Phenomena 02 (2013) 7-14
  • [11] A.Guha, B. Smiley, Experiment and analysis for an improved design of the inlet and nozzle in Tesla disc turbines, Proceedings IMechE, Part A: J Power and Energy 224 (2010), 261-277
  • [12] R. Puzyrewski, K. Tesch, 1D model calibration based on 3D calculations for Tesla turbine, Task Quarterly 14 (2011) 237-248
  • [13] W. Rice, Tesla turbomachinery, Proceedings of IV International Nikola Tesla Symposium (1991)
  • [14] R. Li, H. Wang, E. Yao, M. Li, W. Nan, Experimental study on bladeless turbine using incompressible working medium, Advances in Mechanical Engineering 9 (2017), 1-12
  • [15] Ansys 17.0 documentation (2016)
  • [16] S.Harmand, J. Pellé, S.Poncet, I.V. Shevchuk, Review of fluid flow and convective heat transfer within rotating disk cavities with impinging jet, International Journal of Thermal Science 67 (2013), 1-30
  • [17] P. Lampart, K. Kosowski, M. Piwowarski, Ł. Jędrzejewski, Design analysis of Tesla micro-turbine operating on a low-boiling medium, Polish Maritime Research 63 (2009) 28-33
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ce20a4f3-8195-47a7-905e-c32c7f51e42a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.