PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Adaptation of engineering FEA-based algorithms to LCF failure and material data prediction in offshore design

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
There is an ever growing industrial demand for quantitative assessment of fatigue endurance of critical structural details. Although FEA-based calculations have become a standard in engineering design, problems involving the Low-To-Medium cycle range (101 -104 ) remain challenging. This paper presents an attempt to optimally choose material data, meshing density and other algorithm settings in the context of recent design of the large offshore windfarm installation vessel, VIDAR. In this study, an attempt is made to assess default FEA-based procedures in RADIOSS software by comparing an experimental test against numerical analyses. Standard slender cylindrical (“I”) samples as well as originally designed “Z”-shaped samples made of A90 (S690)-grade steel have been loaded at various nominal stress ranges with or without local yielding. A good correlation has been found between FEA results and experimental cycles-to-failure in I-shaped samples, provided the software material data generator is avoided and Smith-Watson-Topper mean stress correction is used. In the case of Z-shaped samples, the calculated cycles-to-initiation of macro-crack is significantly lower (factor of 3) from the experiment. The observed discrepancy is argued to be due to stress gradient influence.
Rocznik
Strony
1345--1356
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
  • Gdansk University of Technology, Faculty of Applied Physics and Mathematics, Gdańsk, Poland, and DES ART Ltd., Gdynia, Poland
autor
  • DES ART Ltd., Gdynia, Poland
autor
  • Naval Academy, Gdynia, Poland
Bibliografia
  • 1. Altair Ltd: HyperWorks Users’ Guide, Radioss Fatigue Manager
  • 2. Basan R., Franulovic M., Prebil I., Crnjaric-Zic N., 2011, Analysis of strain-life fatigue parameters and behaviour of different groups of metallic materials, International Journal of Fatigue, 33, 484-491
  • 3. Biglari F.R., Rezaeinasab A., Nikbin K., Sattarifar I., 2006, Finite Element Simulation of dynamic crack propagation without remeshing, Journal of ASTM International, 3, 7
  • 4. E-Fatigue. Finite Element Model Strain-Life Technical Background, https://www.efatigue.com/fem/background/strainlife.html,
  • 5. Fatemi A., Zeng Z., Plaseied A., 2004, Fatigue behavior and life predictions of notched specimens made of QT and forged microalloyed steels, International Journal of Fatigue, 26, 663-672
  • 6. Firat M., 2011, A computer simulation of four-point bending fatigue of a rear axle assembly, Engineering Failure Analysis, 18, 2137-2148
  • 7. Gaier C., Dannbauer H., 2006, An efficient critical plane method for ductile, semiductile and brittle materials, Conference Proceesings of Fatigue Congress, Atlanta
  • 8. de Jesus A.M.P., Matos R., Fontoura B.F.C., Rebelo C., da Silva L.S., Veljkovic M., 2012, A comparison of the fatigue behavior between S355 and S690 steel grades, Journal of Constructional Steel Research, 79, 140-150
  • 9. Kang G., 2008, Ratchetting: recent progresses in phenomenon observation, constitutive modeling and application, International Journal of Fatigue, 30, 1448-1472
  • 10. Koh S.K., 2009, Fatigue analysis of an automotive steering link, Engineering Failure Analysis, 16, 3,914-922
  • 11. Mercer I., Malton G., Draper J., 2003, The effect of user decisions on the accuracy of fatigue analysis from FEA, Conference Proceedings, ABAQUS 2003 Users’ Meeting
  • 12. Papuga J., Vargas M., Hronek M., 2012, Evaluation of uniaxial fatigue criteria applied to multiaxially loaded unnotched samples, Engineering Mechanics, 19, 2/3, 99-111
  • 13. Richardson C.L., Hegemann J., Sifakis E., Hellrung J., Teran J.M., 2011, An XFEM method for modelling geometrically elaborate crack propagation in brittle materials, International Journal for Numerical Methods in Engineering, 12, 88(10), 1042-1065
  • 14. Słowik J., Łagoda T., 2011, The fatigue life estimation of elements with circumferential notch under uniaxial state of loading, International Journal of Fatigue Volume, 33, 9, 1304-1312
  • 15. Spiliopoulos K.V., Panagiotou K.D., 2012, A direct method to predict cyclic steady states of elastoplastic structures, Computer Methods in Applied Mechanics and Engineering, 223/224, 186-198
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniajacą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ce1ef26a-263c-4b20-906c-66704b7e44b8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.