Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Phytomeliorative efficiency of vegetation species composition on devastated landscapes, including landfills, is a key factor in improving the ecological state at both local and regional levels. This article presents results of assessing heavy metal content and phytomelioration potential of vegetation cover on devastated areas, particularly at the Bronytsia landfill (Lviv region, Ukraine). Depending on the edaphic and climatic conditions, the surface of the devastated territories may have significant phytomeliorative potential, which is an important component of the reclamation process. Urban green spaces play a multifunctional role in improving the environment by providing oxygen production, microclimate regulation, filtration, noise absorption, and decorative and aesthetic functions. The key indicator for assessing the level of phytomelioration in devastated areas is the phytomelioration efficiency coefficient (KFM). During the research at the landfill, various categories of plant communities were identified, such as frutocenoses, sylvacenoses, ruderalenoses, pratocenoses, and agrocenoses. The KFM estimation for each landfill site showed the following results: Site 1 (western side): KFM = 4.5; Site 2 (northern side): KFM = 4.0; Site 3 (eastern side): KFM = 5.0; Site 4 (southern side): KFM = 5.5; Site No. 5 (central part): KFM = 2.1; Site 6 (control): KFM = 6.55. The results obtained indicate the suitability of the study area for reclamation activities for minimizing the negative impact on the environment.
Wydawca
Rocznik
Tom
Strony
239--251
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
autor
- Lviv State University of Life Safety, Institute of Civil Protection, Kleparivska Str., 35, 79000 Lviv, Ukraine
autor
- Lviv State University of Life Safety, Institute of Civil Protection, Kleparivska Str., 35, 79000 Lviv, Ukraine
autor
- National Academy of Internal Affairs, Solom’yans’ka Square, 1, 03035 Kyiv, Ukraine
autor
- Open International University for Human Development Ukraine, Lvivska Str., 23, 03115 Kyiv, Ukraine
autor
- Lviv State University of Life Safety, Institute of Civil Protection, Kleparivska Str., 35, 79000 Lviv, Ukraine
autor
- Lviv State University of Life Safety, Institute of Civil Protection, Kleparivska Str., 35, 79000 Lviv, Ukraine
autor
- Lviv State University of Life Safety, Institute of Civil Protection, Kleparivska Str., 35, 79000 Lviv, Ukraine
autor
- Lviv State University of Life Safety, Institute of Civil Protection, Kleparivska Str., 35, 79000 Lviv, Ukraine
Bibliografia
- 1. Adamcova, D., Radziemska, M., Ridoskova, A., Barton, S., Pelcova, P., Elbi, J., Kunicky, J., Brtnicky, M., & Vaverkova, M. D. (2017). Environmental assessment of the effects of a municipal landfill on the content and distribution of heavy metals in Tanacetum vulgare L. Chemosphere, 185, 1011–1018. https://doi.org/10.1016/j.chemosphere.2017.07.060
- 2. Amrit, D., Adhikari, P., Shrestha, P., Ghimire, R., Liu, Z., Pollock, D. A., Acharya, P., & Aryal, D. R. (2023). Cover crop residue quality regulates litter decomposition dynamics and soil
- carbon mineralization kinetics in semi-arid cropping systems. Applied Soil Ecology. https://doi.org/10.1016/j.apsoil.2023.105160
- 3. Anthony, P., Murphy, M., Coudert, M., & Barker, J. (2000). Plants as biomarkers for monitoring heavy metal contaminants on landfill sites using sequential extraction and inductively coupled plasma atomic emission spectrophotometry (ICP-AES). Journal of Environmental Monitoring. https://doi.org/10.1039/B005594H
- 4. Aydi, S., Sassi, A., Bouajila, A., & Abdelly, C. (2023). Phytoremediation potential of native plants: Biomonitoring approach in contaminated soils. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. https://doi.org/10.15835/nbha51213063
- 5. Bochko, O., Kosar, N., Kuzo, N., Fihun, N., & Kliuvak, O. (2024). Study of the influence of commercial activities on waste formation in Ukraine in the context of sustainable development. Scientific Review Engineering and Environmental Sciences. https://doi.org/10.22630/srees.6142
- 6. Canal, D. C., & Lemos, E. C. (2023). Diagnosis of environmental degradation in the controlled landfill area of New Venetia – ES. RGSA. https://doi.org/10.24857/rgsa.v17n10-031
- 7. Chen, S. M., Fu, W., Cai, L., Xing, Z., Mou, B., Wang, Y., Wu, S., & Zhao, T. (2023). Metabolic diversity shapes vegetation-enhanced methane oxidation in landfill covers: Multi-omics study of rhizosphere microorganisms. Waste Management. https://doi.org/10.1016/j.wasman.2023.10.021
- 8. Dementieieva, Y. Y., Aseeva, S. V., Andrusenko, L. Y., & Chaplygina, A. B. (2020). Analysis of solid waste landfills vegetation cover of Kharkiv region. Scientific Bulletin of Biology. https://doi.org/10.30970/SBI.1404.640
- 9. Frazer-Williams, R., & Sankoh, A. (2024). Soil contamination resulting from inefficient solid waste management. Soil Contamination Studies. https://doi.org/10.1016/b978-0-323-95967-4.00010-6
- 10. Garbo, F., Pivato, A., Manachini, B., Moretto, C. G., & Lavagnolo, M. C. (2019). Assessment of the ecotoxicity of phytotreatment substrate soil as landfill cover material for in-situ leachate management. Journal of Environmental Management. https://doi.org/10.1016/J.JENVMAN.2018.10.014
- 11. Gautam, M., & Agrawal, M. (2019). Identification of metal-tolerant plant species for sustainable phytomanagement of abandoned red mud dumps. Applied Geochemistry, 104, 83–92. https://doi.org/10.1016/j.apgeochem.2019.03.020
- 12. Ghadiri, H., Benaud, P., Greenway, M., Yuen, S. T. S., & Zhu, G. X. (2011). Notice of retraction: Phyto-cover of landfill sites; a sustainable alternative to conventional clay cover. International Conference on Biomedical Engineering. https://doi.org/10.1109/ICBBE.2011.5781491
- 13. Jan, M., Ahmad, T., Mir, R., & Khare, R. K. (2023). Phytoremediation. In Comprehensive Plant Science and Engineering,123–145. https://doi.org/10.1002/9781119989318.ch10
- 14. Khan, V., Roy, S., & Rajesh, S. (2022). Numerical investigation on hydraulic and gas flow response of MSW landfill cover system comprising a geosynthetic clay liner under arid climatic conditions. Geotextiles and Geomembranes. https://doi.org/10.1016/j.geotexmem.2022.08.001
- 15. Khapre, A., Khan, S. A., & Kumar, S. (2021). A laboratory-scale phytocover system for municipal solid waste landfills. Environmental Technology. https://doi.org/10.1080/09593330.2021.1931470
- 16. Khapre, A., Kumar, S., & Rajasekaran, C. (2019). Phytocapping: An alternate cover option for municipal solid waste landfills. Environmental Technology. https://doi.org/10/09593330.2017
- 17. Kostopoulou, P., Karagiannidis, A., Rakimbei, P., & Tsiouvaras, K. (2010). Simulating the water balance in an old non-engineered landfill for optimizing plant cover establishment in an arid environment. Desalination. https://doi.org/10.1016/J.DESAL.200
- 18. Kucheryavyi, V. P. (2003). Phytomelioration: A textbook. Lviv
- 19. Manuhina, M. Y., & Tatsii, I. V. (2024). Analysis of the current state and main trends in the formation of the waste management system. Bulletin of the Volodymyr Dahl East Ukrainian National University. https://doi.org/10.332/199-792-202-281-1-20-27
- 20. Nersesyan, A., Mišík, M., Cherkas, A., Serhiyenko, V., Staudinger, M., Holota, S., Yatskevych, O., Melnyk, S., Holzmann, K., & Knasmüller, S. (2021). Use of micronucleus experiments for the detection of human cancer risks: A brief overview. Proceedings of the Shevchenko Scientific Society. Medical Sciences, 65(2). https://doi.org/10.25040/ntsh2021.02.05
- 21. Novarlić, B., Krulec, J., Arsić, T., & Sremac, S. (2024). Natural hazards and their environmental impact: Flood risks in the systemic management of non-hazardous municipal waste. Opportunities and Challenges in Sustainability. https://doi.org/10.56578/ocs030203
- 22. Nubia, M., Ferreira, D., Santos, A. M., Pereira, B., Cavalcante, A. C., Pereira, W. E., & Pereira, A. de O. (2019). Potential of species of green coverage in Entisol. The Journal of Agricultural Science. https://doi.org/10.5539/jas.v11n11p263
- 23. Oziegbe, O., Oluduro, A. O., Oziegbe, E. J., Ahuekwe, E. F., & Olorunsola, S. J. (2021). Assessment of heavy metal bioremediation potential of bacterial isolates from landfill soils. Saudi Journal of Biological Sciences. https://doi.org/10.1016/j.sjbs.2021
- 24. Popovych, V., Bosak, P., Petlovanyi, M., Telak, O., Karabyn, V., & Pinder, V. (2021). Environmental safety of phytogenic fields formation on coal mines tailings. Environmental & Socio-Economic Studies, 9(3) https://doi.org/10.32014//2021.2518-170X.44
- 25. Popovych, V., & Gapalo, A. (2021). Monitoring of ground forest fire impact on heavy metals content in edafic horizons. Journal of Ecological Engineering, 22(3), 15https://do.org//10/229989/135
- 26. Prykhodko, V. Yu., Mykhailenko, V. I., & Safranov, T. A. (2023). Municipal solid waste management in Ukraine as a part of sustainable development strategy. Conference on Sustainable Development. https://doi.org/10.52326/csd2023.05
- 27. Salt, M., Yuen, S. T. S., Ashwath, N., Sun, J., Benaud, P., Zhu, G. X., Jaksa, M. B., Ghadiri, H., Greenway, M., & Fourie, A. (2019). Phytocapping of landfills. In Landfill Management: Theory and Practice, 123–145. https://doi.org/10.1016/ B978-0-12-407721-8.00031-0
- 28. Sasmaz, M., Uslu Senel, G., & Obek, E. (2020). Strontium accumulation by the terrestrial and aquatic plants affected by mining and municipal wastewaters (Elazig, Turkey). Environmental Geochemistry and Health, 43(6), 2257–2270. https://doi.org/10.1016/j.sjbs.2021.03.072
- 29. Serhiyenko, V. A., & Serhiyenko, A. A. (2022). Ezetimibe and fenofibrate in patients with metabolic syndrome: A comparative study with a focus on endothelial function. Journal of Endocrinology Research, 4(2), 135–146. https://doi.org/10.25122/ jml-2022-0013
- 30. Serhiyenko, V., Holzmann, K., Holota, S., Derkach, Z., Nersesyan, A., Melnyk, S., Chernysh, O., Yatskevych, O., Mišík, M., Bubalo, V., Strilbytska, O., Vatseba, B., Lushchak, O., Knasmüller, S., & Cherkas, A. (2022). An exploratory study of physiological and biochemical parameters to identify simple, robust, and relevant biomarkers for therapeutic interventions for PTSD: Study rationale, key elements of design, and a context of war in Ukraine. Proceedings of the Shevchenko Scientific Society. Medical Sciences, 69(2). https://doi.org/10.25040/ntsh2022.02.14
- 31. Serhiyenko, V., & Serhiyenko, A. (2021). Diabetes mellitus and arterial hypertension. International Journal of Endocrinology (Ukraine), 17(2), 175–188. https://doi.org/10.22141/2224-0721.17.2.2021.230573
- 32. Shah, B. D. (2021). Performance evaluation of phytocapping as covering for sanitary landfill sites. ADBU Journal of Engineering Technology (AJET).
- 33. Shyshkin, E., Haiko, Y., & Chernonosova, T. (2024). Ways of recycling construction waste during the post-war reconstruction of ruined cities. Містобудування та територіальне планування. https://doi.org/10.32347/2076-815x.2024.85.679-697
- 34. Skrobala, V., Popovych, V., & Pinder, V. (2014). Ecological patterns for vegetation cover formation in the mining waste dumps of the Lviv-Volyn coal basin. Mining of Mineral Deposits, 14(2), 119–126. https://doi.org/10.33271/mining14.02.119
- 35. Skrobala, V., Popovych, V., Tyndyk, O., & Voloshchyshyn, A. (2016). Chemical pollution peculiarities of the Nadiya mine rock dumps in the Chervonohrad Mining District, Ukraine. Mining of Mineral Deposits, 16(4), 71–78. https://doi.org/10.33271/mining16.04.071
- 36. Souza, G. A. V. S., Souza, T. A. F., Santos, D., Rios, E. S., & Souza, G. J. L. (2018). Agronomic evaluation of legume cover crops for sustainable agriculture. Russian Agricultural Sciences, 44(1), 31–38. https://doi.org/10.3103/S1068367418010091
- 37. Tintner, J., & Klug, B. (2011). Can vegetation indicate landfill cover features? Flora. https://doi.org/10.1016/J.FLORA.2011.01.005
- 38. Vaverková, M. D., Radziemska, M., Bartoň, S., Cerdà, A., & Koda, E. (2018). Land degradation and sustainable development. Land Degradation & Development, 29(10), 3674–3680. https://doi.org/10.1002/ldr.3107
- 39. Wang, C., Ng, W. W., Guo, H., & Xue, Q. (2021). A novel environmentally friendly vegetated three-layer landfill cover system using construction wastes but without a geomembrane. Indian Geotechnical Journal. https://doi.org/10.1007/S40098-021-00542-7
- 40. Zhang, Y., Liu, Y., Min, X., Jiang, Q., & Su, W. (2022). Selection of landfill cover materials based on data envelopment analysis (DEA): A case study on four typical covering materials. Sustainability, 14(17), 10888. https://doi.org/10.3390/su141710888
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ce1e21f9-b3a7-4d93-889b-761c89dc2598
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.