PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simulation and analysis of a turbulent flow around a three-dimensional obstacle

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study of flow around obstacles is devised into three different positions: above the obstacle, upstream of the obstacle, and downstream of the latter. The behaviour of the fluid downstream of the obstacle is less known, and the physical and numerical modelling is being given the existence of recirculation zones with their complex behaviour. The purpose of the work presented below is to study the influence of the inclined form of the two upper peaks of a rectangular cube. A three-dimensional study was carried out using the ANSYS CFX calculation code. Turbulence models have been used to study the flow characteristics around the inclined obstacle. The timeaveraged results of contours of velocity vectors , cross-stream and stream wise velocity and streamlines were obtained by using K-ω shear -stress transport (SST), RANG K-ε and K-ε to model the turbulence, and the governing equations were solved using the finite volume method. The turbulence model K-ω SST has presented the best prediction of the flow characteristics for the obstacle among the investigated turbulence models in this work.
Rocznik
Strony
173--180
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
  • Faculty of Technology, Department of Mechanical Engineering, University of Tlemcen, Bp 230, Chetouane Tlemcen, Algeria
  • Faculty of Technology, Department of Mechanical Engineering, University of Tlemcen, Bp 230, Chetouane Tlemcen, Algeria
Bibliografia
  • 1. Aliane K. (2011), Passive control of the turbulent flow over a surface mounted rectangular block obstacle and a rounded rectangular obstacle, International Review of Mechanical Engineering (IREME), 5(2), 305-314.
  • 2. Aliane K., Sebbane O., Hadjoui A. (2003), Dynamic study of turbomachine blade cooling models, Proceedings of the 11th International Day of Thermomics, Algiers (Algeria), 315-320.
  • 3. Amraoui M.A., Aliane K. (2018), Three-dimensional Analysis of Air Flow in a Flat Plate Solar Collector, Periodica Polytechnica Mechanical Engineering, 62(2), 126-135.
  • 4. Basnet K., Constantinescu G. (2017), The structure of turbulent flow around vertical plates containing holes and attached to a channel bed, Journal of Physics of Fluids, 29, 115101.
  • 5. Becker H. Lienhart F.D. (2002), Flow around three-dimensional obstacles in boundary layers, J. Wind Eng. Ind. Aerodyn., 90, 265-279.
  • 6. Bitsuamlak G., Stathopoulos T., Bedard C. (2006), Effects of upstream two-dimensional hills on design wind loads a computational approach, Wind and Structures, 9(1), 37–58.
  • 7. Diaz-Daniel C., Laizet S., Vassilicos J. (2017), Direct Numerical Simulations of a wall-attached cube immersed in laminar and turbulent boundary layers, International Journal of Heat and Fluid Flow (Preprint submitted).
  • 8. Djeddi S.R., Masoudi A., Ghadimi P. (2013), Numerical Simulation of Flow around Diamond-Shaped Obstacles at Low to Moderate Reynolds Numbers, American Journal of Applied Mathematics and Statistics, 1(1), 11-20.
  • 9. Dogan S., Yagmur S., Goktepeli I, Ozgoren M. (2017), Assessment of Turbulence Models for Flow around a Surface-Mounted Cube, International Journal of Mechanical Engineering and Robotics Research, 6(3), 237-241.
  • 10. Ennouri M., Kanfoudi H., Bel Hadj Taher A., Zgolli R. (2019), Numerical Flow Simulation and Cavitation Prediction in a Centrifugal Pump using an SST-SAS Turbulence Model, Journal of Applied Fluid Mechanics, 12(1), 25-39.
  • 11. Filippini G., Franck G., Nigro N. (2005), Large Eddy Simulations of the flow around a square cylinder, Mecanica Computacional, XXIV A. Larreteguy (Editor), Buenos Aires, Argentina.
  • 12. Hadjoui A., Sebbane O., Aliane K., Azzi A. (2003), Study of the appearance of swirling zones in a flow confronted with obstacles located at the entrance of a canal, Proceedings of the 9th Congress of the French Society of Process Engineering, Saint-Nazaire, (France), 224-229.
  • 13. Hainesa M., Taylor I. (2018), Numerical investigation of the flow field around low rise buildings due to a downburst event using large eddy simulation, Journal of Wind Engineering & Industrial Aerodynamics, 172, 12-30.
  • 14. Hunt J.C.R., Wray A. A., Moin P. (1988), Eddies, stream and convergence zones in turbulent flows, Technical report, Center of Turbulence Research.
  • 15. Hussein H.J., Martinuzzi R.J. (1996), Energy balance for the turbulent flow around a surface mounted cube placed in a channel, Phys. Fluids, Vol. 8, No. 3, 764-780.
  • 16. Hwang J-Y, Yang K-S. (2010), Numerical study of vertical structures around a wall‐mounted cubic obstacle in channel flow, Physics of Fluids, 16(7), 2382-2394.
  • 17. Jones W.P., Launder B.E. (1972), The prediction of laminarization with a two-equation model of turbulence, International Journal of Heat and Mass Transfer, 15, 301-14.
  • 18. Kanfoudi H., Bellakhall G., Ennouri M., Bel Hadj Taher A., Zgolli R. (2017), Numerical Analysis of the Turbulent Flow Structure Induced by the Cavitation Shedding Using LES, Journal of Applied Fluid Mechanics, 10(3), 933–46.
  • 19. Krajnovi'c S., Davidson L. (2002), Large-eddy simulation of the flow around a bluff body, AIAA Journal, 40(5), 927-936.
  • 20. Liakos A., Malamataris N.A. (2014), Direct numerical simulation of steady state, three dimensional, laminar flow around a wall mounted cube, Physics of Fluids, 26(5), 053603.
  • 21. Liao B., Shan-Qun C. (2015), Experimental study of flow past obstacles by PIV, 7th International Conference on Fluid Mechanics, ICFM7, Procedia Engineering, 126, 537 – 541.
  • 22. Lim H.C., Thomas T.G., Castro I. P. (2009), Flow around a cube in a turbulent boundary layer: LES and experiment, Journal of Wind Engineering and Industrial Aerodynamics, 97(2), 96–109.
  • 23. Martinuzzi R., Tropea C. (1993), The flow around a surface-mounted prismatic obstacle placed in a fully developed channel flow, J. Fluids Eng., 115, 85-92.
  • 24. Merahi.I , Abidat .M, Azzi.A, Hireche.O (2002), Numerical assessment of incidence losses in an annular blade cascade, Séminaire international de Génie Mécanique, Sigma’02 ENSET, Oran.
  • 25. Nemdili S., Nemdili F., Azzi A. (2015), Improving cooling effecti veness by use of chamfers on the top of electronic components, Microelectronics Reliability, 55(7), 1067-1076.
  • 26. Rostane B. , Aliane K. (2015), Three Dimensional Simulation for Turbulent Flow Around Prismatic Obstacle with Rounded Downstream Edge Using the k-ω SST Model, International Review of Mechanical Engineering (I.RE.M.E.), 9(3), 266.277.
  • 27. Sari-Hassoun Z., Aliane K.. (2016), Numerical simulation of turbulent flow around obstacles with a curved upstream edge, International Journal of Scientific Research & Engineering Technology (IJSET), 196-201.
  • 28. Sebbane O., Hadjoui A., Aliane K., Azzi A. (2003), New method of visualization of flows with very large Reynolds number, Proceedings of the 9th Congress of the French Society of Process Engineering, Saint -Nazaire, France, 259-264.
  • 29. Shinde S., Johnseny E., Makiz K. (2017), Understanding the effect of cube size on the near wake characteristics in a turbulent boundary layer, 47th AIAA Fluid Dynamics Conference, Denver, Colorado.
  • 30. Sumner D., Rostamy N., Bergstrom D., Bugg J. (2015), Influence of aspect ratio on the flow above the free end of a surface-mounted finite cylinder, International Journal of Heat and Fluid Flow, 56, 290- 304.
  • 31. Sumner D., Rostamy N., Bergstrom D., Bugg J.D. (2017), Influence of aspect ratio on the mean flow field of a surface-mounted finiteheight square prism, International Journal of Heat and Fluid Flow, 65, 1-20.
  • 32. Vinuesa R., Schlatter P., Malm J., Mavriplis C., Henningson, D.S. (2015), Direct numerical simulation of the flow around a wall-mounted square cylinder under various inflow conditions, Journal of Turbulence, 16, 555-587.
  • 33. Yakhot A., Liu H., Nikitin N. (2006), Turbulent flow around a wallmounted cube: A direct numerical simulation, International Journal of Heat and Fluid Flow, 27(6), 994-1009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ce1ca092-4846-4509-adc2-3b4398044fcf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.