PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mineralogy and geochemistry of the Tonmittelsalz (z3TM) and Tonbrockensalz (z4TS) as “zuber” equivalents in the German Zechstein (Upper Permian)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Two main lithostratigraphic units of clay-bearing rock salt, the Tonmittelsalz of the Leine formation (z3) and Tonbrockensalz of the Aller formation (z4), occur in the German Zechstein (Upper Permian) succession. These units could be equivalents of the Brown Zuber (Na3t) and Red Zuber (Na4t) in the PZ3 and PZ4 cyclothemes of the Polish Zechstein basin. Mineralogical-geochemical investigations of the Tonmittelsalz and Tonbrockensalz were carried out on samples taken from a deep borehole in the Gorleben salt dome in Northern Germany. Even though these units are characterized by a similar mineralogical composition of mainly halite with subordinate quantities of anhydrite and clay minerals, variations in mineral content and fabric were observed. The older Tonmittelsalz rocks document some primary features like chevrons in halite crystals and idiomorphic halite crystals in clay-bearing layers. A brecciated fabric and a vague layering, shown by polarizing microscopy and CT-imaging, indicate a deformation of the younger Tonbrockensalz, which is folded in the deep borehole Go1004. Nevertheless, internal fabrics of clay clasts in the z4TS show an early brecciated and folded fabric during sedimentation or diagenesis. Main component chemistry and REE are comparable in both units, but significant differences were observed for trace element and isotope data. The z3TM rocks contain higher values of trace elements like Liand higher values in REE, while the z4TS rocks are enriched in K. Isotope data of anhydrites of both units correspond to those of the Zechstein. The δ18O values of samples from the Tonbrockensalz display a relatively large range (8.5-11.9‰) and may indicate changing conditions during its formation. In contrast, only minor variations in the δ34S of samples from the Tonbrockensalz and in both isotope compositions of samples from the Tonmittelsalz have been documented.
Rocznik
Strony
896--916
Opis fizyczny
Bibliogr. 37 poz., fot., rys., tab., wykr.
Twórcy
autor
  • Federal Institute for Geosciences and Natural Resources (BGR), Stilleweg 2, 30655 Hannover, Germany
autor
  • Federal Institute for Geosciences and Natural Resources (BGR), Stilleweg 2, 30655 Hannover, Germany
autor
  • Federal Institute for Geosciences and Natural Resources (BGR), Stilleweg 2, 30655 Hannover, Germany
Bibliografia
  • 1. Bettison-Varga, L., Mackinnon, I.D.R., 1997. The role of randomly mixed-layered chlorite/smectite in the transformation of smectite to chlorite. Clays and Clay Minerals, 45: 506-516.
  • 2. Bornemann, O., 1991. Zur Geologie des Salzstocks Gorleben nach den Bohrergebnissen. BfS-Schriften, Salzgitter.
  • 3. Bornemann, O., Fischbeck, R., 1988. Salzstockuntersuchung Gorleben 1004. Schichtenverzeichnis ab Oberfläche des Salzstocks (Stand. April 1988). Ergebnisbericht. Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover.
  • 4. Bornemann, O., Behlau, J., Fischbeck, R., Hammer, J., Jaritz, W., Keller, S., Mingerzahn, G., Schramm, M., 2008. Description of the Gorleben Site. Part 3: Results of the geological surface and underground exploration of the salt formation. Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover. https://www.bgr.bund.de/EN/Themen/Endlagerung/Produkte/produkte_node_en.html.
  • 5. Boyton, W.V., 1984. Cosmochemistry of the rare earth elements: Meteorite studies. In: Rare Earth Geochemistry (ed. P. Henderson). Elsevier, Amsterdam-Oxford-New York-Tokyo.
  • 6. Brammer, K.-J., 1992. Stoffbestand und Lanthanidenverteilung der wasserlöslichen Mineralfraktion in marinen Zechsteinevaporiten. Dissertation. Cuvillier Verlag, Göttingen.
  • 7. Braitsch, O., 1971. Salt Deposits, Their Origin and Composition. Springer Berlin, Heidelberg, New York.
  • 8. Bruland, K.W., 1983. Trace elements in sea water. Chemical Oceanography, 8: 157-220.
  • 9. Czapowski, G., Tomassi-Morawiec, H., 2013. Palaeogeographic and palaeoclimate factors of salinity fluctuations in the eastern part of the Late Permian (Zechstein) European Basin: case study from the salt basin in Poland. Geological Society Special Publications, 376.
  • 10. Elderfield, H., Greavens, M.J., 1982. The rare earth elements in seawater. Nature, 296: 214-219.
  • 11. Haskin, M.A., Haskin, L.A., 1966. Rare earths in European shales: a redetermination. Science, 154: 507-509.
  • 12. Haskin, L.A., Frey, F.A., Wildeman, T.R., 1968. Relative and absolute terrestrial abundances of the rare-earths. In: Origin and Distribution of the Elements (ed. L.A. Ahrens): 889-912. Pergamon, New York.
  • 13. Herde, W., 1953. Die Riedel Gruppe im Zentralen Teil des Nordwestdeutschen Zechsteingebietes (Stratigraphie, Genese und Paläontologie). Ph.D. thesis. Göttingen.
  • 14. Herrmann, A.G., Wedepohl, K.H., 1967. Die quantitative Bestimmung der Seltenen Erden (La-Lu) und Yttriums in silicatischen Gesteinen. Zeitschrift für analytische Chemie, 225: 255-274.
  • 15. Herrmann, A.G., Siewers, U., Harazim, B., Usdowski, E., 2003. Kriterien zur Beurteilung von Salzlösungen in den Zechsteinevaporiten Mittel- und Norddeutschlands. Kali und Steinsalz 3: 24-35.
  • 16. Käding, K.-C. 2000. Die Aller-, Ohre-, Friesland- und Fulda-Folge (vormals Bröckelschiefer-Folge). Kali und Steinsalz 13: 86-96.
  • 17. Klarr, K., Paul, J., 1991. Der Übergang vom Zechstein zum Buntsandstein in den Bohrungen Remlingen 5 und Remlingen 9 (Asse bei Braunschweig). Zentralblatt für Geologie und Paläontologie, Teil I: 913-928.
  • 18. Mattenklott, M., 1995.Modellberechnungen zur Br- und Rb-Verteilung in Carnallitgesteinen. Kali und Steinsalz, 11: 341-344.
  • 19. Mertineit, M., Schramm, M., Hammer, J., Zulauf, G., 2014. Deformation of anhydrite rocks (Gorleben-Bank, z3OSM) in a high-strain domain of the Gorleben salt dome, Germany. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 165: 49-62.
  • 20. Montinaro, A., Strauss, H., Mason, P.R.D., Roerdink, D., Münker, C., Schwarz-Schampera, U., Arndt, N.T., Farquhar, J., Beukes, N.J., Gutzmer, J., Peters, M., 2015. Paleoarchean sulfur cycling: multiple sulfur isotope constraints from the Barberton Greenstone Belt, South Africa. Precambrian Research, 267: 311-322.
  • 21. Natkaniec-Nowak, L., Wachowiak, J., Stach, P., 2014. Mineralogical and petrological characteristics of Red Zuber (Na4t) deposits from the borehole M-34 of the Mogilno Salt Dome. Przegląd Solny, 10: 13-24.
  • 22. Peryt, T.M, Hałas, S., Hryniv, S.P., 2010. Sulphur and oxygen isotope signatures of late Permian Zechstein anhydrites, West Poland: seawater evolution and diagenetic constraints. Geological Quarterly, 54 (4): 387-400.
  • 23. Piepgras, D.J., Jacobsen, S.B., 1992. The behavior of rare earth elements in seawater: precise determination of variations in the North Pacific water column. Geochimica et Cosmochimica Acta, 56: 1851-1862.
  • 24. Rietveld, H., 1969. A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 2: 65-71.
  • 25. Ronov, A.B., Balashov, Y.A., Girin, Y.P., Bratishko, R.K., Kazakova, G.A., 1974. Regularities of rare-earth element distribution in the sedimentary shell and in the crust of the earth. Sedimentology, 21: 171-193.
  • 26. Schramm, M., 1995. Die Minealparagenesen des magne- sitführenden norddeutschen Zechsteins. Eine mineralogische, petrologische und geochemische Untersuchung. Dissertation. Cuvillier, Göttingen.
  • 27. Seal, R.R.I., Alpers, C.N., Rye, R.O., 2000. Stable isotope systematics of sulfate minerals. Reviews in Mineralogy & Geochemistry, 40: 541-593.
  • 28. Słowakiewicz, M., Mikołajewski, Z., 2011. Upper Permian Main Dolomite microbial carbonates as potential source rocks for hydrocarbons (W Poland). Marine and Petroleum Geology, 28: 1572-1591.
  • 29. Taylor, S.R., McLennan, S.M., 1985. The Coniinenial Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford-London-Edinburgh-Boston-Palo Alto-Melbourne.
  • 30. Thiemeyer, N., Habersetzer, J., Peinl, M., Zulauf, G., Hammer, J., 2015. The application of high resolution X-ray computed tomography on naturally deformed rock salt: Multi-scale investigations of the structural inventory. Journal of Struciural Geology, 77: 92-106.
  • 31. Usdowski, E., 1994. Synthesis of dolomite and geochemical implications. International Association of Sedimentologists Special Publication 21: 345-360.
  • 32. Usdowski, E., Dietzel, M., 1998. Atlas and Data of Solid-Solution Equilibria of Marine Evaporites. Springer Berlin, Heidelberg, New York.
  • 33. Wachowiak, J., Natkaniec-Nowak, L., Smolinski, W., 2014. Mineralogical and petrographic characteristics of Brown Zuber (Na3t) deposits from the borehole M-34 of the Mogilno Salt Dome (in Polish with English summary). Przegląd Solny, 10: 25-38.
  • 34. Wagner, R., 1991. Stratigraphie des höchsten Zechsteins im Polnischen Zentralbeckens. Zentralblatt für Geologie und Paläontologie, Teil I, 4: 883-892.
  • 35. Wagner, R., 1994. Stratigraphy and evolution of the Zechstein basin in the Polish Lowland. Prace Państwowego Instytutu Geologicznego, 146: 1-71.
  • 36. Wagner, R., Peryt, T.M., 1997. Possibility of sequence stratigraphy subdivision of the Zechstein in the Polish Basin. Geological Quarterly, 41 (4): 457-474.
  • 37. Warren, J.K., 2016. Evaporites: Sediments, Resources and Hydrocarbons. Springer Berlin, Heidelberg, New York.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ce1a2f31-ba8a-4875-8614-70e31da31486
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.