Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article describes the results of an analysis of the states and operating conditions the ASz-62 IR-16E engine. The tests were carried out on an AN-2 aeroplane with the ASz-62IR-16E engine. The purpose of this study was to determine the contribution of static and dynamic engine operating states during flight. The engine operating parameters were recorded at a frequency of 16 Hz for over 7 hours of flight. The engine operating points defined by two parameters, i.e. engine speed and intake manifold pressure were analysed, and the mean values, standard deviations and histograms of the distributions of these parameters were determined. The distribution of the occurrence of various operating states, i.e. steady states and transients was also analysed for low, medium and high load, and for IDLE and WOT. The article describes the contribution of the individual engine operating states to the total flight time. The results obtained for the aircraft engine are compared with those obtained for automotive vehicle engines and described in the paper. The study shows that most of the operating time of the ASz-62IR-16E aircraft engine was in steady-state conditions - about 90% of this time, whereas steady-state operating conditions for the automotive engine account for about 80% of the driving time. For the aircraft engine, more than 65% of operating time is heavy load. Small and medium loads account for 10% and 25% of operating time, respectively. In the case of the car engine, only about 5% of operating time is heavy load, while the major part of operating time is under light (about 40%) and medium (about 55%) load. Under idling conditions, the aero-engine's operating time was about 6.2 %, i.e. about twice shorter than that of the car engine (about 13.2 %). Under WOT conditions, the aircraft engine had an operating time of 1.3 %, while for the car engine this condition was extremely rare - about 0.1 %. It was also shown that the ASz-62IR-16E aircraft engine of the AN-2 aircraft in real flight conditions has a specific, most frequently used operating point lying in the range of the values: n=1800÷1900 RPM and MAP=0.8÷0.95 Bar.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
56--72
Opis fizyczny
Bibliogr. 39 poz., fig., tab.
Twórcy
autor
- Department of Thermodynamics, Fluid Mechanics and Aircraft Propulsion Systems, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
autor
- Department of Thermodynamics, Fluid Mechanics and Aircraft Propulsion Systems, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
autor
- Department of Thermodynamics, Fluid Mechanics and Aircraft Propulsion Systems, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
- 1. Kilikevičius A, Rimša V, Rucki M. Investigation of influence of aircraft propeller modal parameters on small airplane performance, Eksploatacja i Niezawodność, 2020; 22(1). 10.17531/ein.2020.1.1.
- 2. Piancastelli L, Cassani S, Calzini F, Pezzuti E. The decisive advantage of CRDID on spark-ignition piston engines for general aviation: Propeller and engine matching for a specific aircraft, ARPN J. Eng. Appl. Sci., 2018; 13(13), 4244–4252.
- 3. Pogačnik B, Duhovnik J, Tavčar J. Aircraft fault forecasting at maintenance service on the basis of historic data and aircraft parameters. Eksploatacja i Niezawodność, 2017; 19(4): 624–633. 10.17531/ ein.2017.4.17.
- 4. Siadkowska K, Wendeker M, Grabowski Ł. An investigation of the fuel injector dedicated to the aircraft opposed-piston two-stroke diesel engine, Combust. Engines, 2019; 177(2): 151–155, doi: 10.19206/ce-2019-227.
- 5. Jakliński P. Analysis of the dual control system operation during failure conditions, Eksploatacja i Niezawodnośc – Maintenance and Reliability 2013; 15(3): 265–271. doi: dx.doi.org/10.17531/ein.
- 6. Eriksson L. Mean value models for exhaust system temperatures, SAE Tech. Pap., 2002; 111: 753–767, doi: 10.4271/2002-01-0374.
- 7. Czarnigowski J, Wendeker M, Jakliński P, Pietrykowski K, Nazarewicz A, Gęca M, Zyśka T. Testing non-uniformity of the combustion process in a radial aircraft engine, SAE Tech. Pap., 2007, doi: 10.4271/2007-01-2074.
- 8. Zhang K, Huang X, Xie Z, Zhou M. Design and optimization of a novel electrically controlled high pressure fuel injection system for heavy fuel aircraft piston engine, Chinese J. Aeronaut., 2018; 31(9): 1920–1928, doi: 10.1016/j.cja.2018.06.013.
- 9. Wang Y, Shi Y, Cai M, Xu W, Yu Q. Efficiency optimized fuel supply strategy of aircraft engine based on air-fuel ratio control, Chinese J. Aeronaut., 2019; 32(2): 489–498, doi: 10.1016/j.cja.2018.10.002.
- 10. Motapon NS, Dessaint LA, Al-Haddad K. A comparative study of energy management schemes for a fuel-cell hybrid emergency power system of moreelectric aircraft, IEEE Trans. Ind. Electron., 2014; 61(3): 1320–1334, doi: 10.1109/TIE.2013.2257152.
- 11. Thoma EM, Grönstedt T, Sola EO, Zhao X. Assessment of an open-source aircraft noise prediction model using approach phase measurements, J. Aircr., 2024; 61(3), 745–760, doi: 10.2514/1.C037332.
- 12. Tomaszek H, Jasztal M, Zieja M, A simplified method to assess fatigue life of selected structural components of an aircraft for a variable load spectrum, Eksploat. i Niezawodn., 2011; 4: 29–34.
- 13. Kirmizi M, Aygun H, Turan O. Energetic and exergetic metrics of a cargo aircraft turboprop propulsion system by using regression method for dynamic flight. Energy, 2024; 296, doi: 10.1016/j. energy.2024.131153.
- 14. Luongo A, Nuccio P, Vignoli M. Optimization of a light aircraft spark-ignition engine, SAE Tech. Pap., 2006; 724: 776–790, doi: 10.4271/2006-01-2420.
- 15. Armstrong JB Simon DL. Implementation of an integrated on-board aircraft engine diagnostic architecture, 47th AIAA/ASME/SAE/ASEE Jt. Propuls. Conf. Exhib. 2011; 1–11, doi: 10.2514/6.2011-5859.
- 16. Yu Y, Cui W, Song B, Wang S, Evaluation of reliability growth in an unmanned aerial vehicle during successive phases of flight testing, Eksploat. I Niezawodn., 2010; 2: 43–47.
- 17. Sivertsson M, Sundström C, Eriksson L, Adaptive control of a hybrid powertrain with map-based ECMS, IFAC Proc. 2011; 44(1): 2949–2954, doi: 10.3182/20110828-6-IT-1002.02091.
- 18. Zhang R, Fujimori S. The role of transport electrification in global climate change mitigation scenarios,” Environ. Res. Lett., 2020; 15: 3, doi: 10.1088/1748-9326/ab6658.
- 19. Mitchell G, Tsao H, Randell T, Marks J, Mackay P. Impact of electric scooters to a tertiary emergency department: 8-week review after implementation of a scooter share scheme, EMA – Emerg. Med. Australas., 2019; 31(6), 930–934, doi: 10.1111/1742-6723.13356.
- 20. Chen J, Wang C, Chen J, Investigation on the selection of electric power system architecture for future more electric aircraft, IEEE Trans. Transp. Electrif., 2018; 4(2): 563–576, doi: 10.1109/TTE.2018.2792332.
- 21. Kuźniar M. Energy comparative analysis of power units for use in light aircraft, AUTOBUSY – Tech. Eksploat. Syst. Transp., 2019; 20(1–2): 88–92, doi: 10.24136/atest.2019.013.
- 22. Zhang X, Chen Y, Hu J, Recent advances in the development of aerospace materials, Prog. Aerosp. Sci., 2018; 97(August 2017): 22–34, doi: 10.1016/j. paerosci.2018.01.001.
- 23. Orkisz M, Kuźniar M. 3E – A new paradigm for the development of civil aviation, Combust. Engines, 2020; 181(2): 3–10, doi: 10.19206/ce-2020-201.
- 24. Misra A. Energy storage for electrified aircraft: The need for better batteries, fuel cells, and supercapacitors, IEEE Electrif. Mag., 2018; 6(3), 54–61, doi: 10.1109/MELE.2018.2849922.
- 25. Zhao X, Guerrero J M, Wu X. Review of aircraft electric power systems and architectures, ENERGYCON 2014 – IEEE Int. Energy Conf., 2014; 949– 953, doi: 10.1109/ENERGYCON.2014.6850540.
- 26. Peng W. Reliability and risk assessment of aircraft electric systems, Eksploatacja I Niezawodność, 2014; 16(4): 497.
- 27. Trainelli L, Perkon I, MAHEPA – A Milestone-Setting Project in Hybrid-Electric Aircraft Technology Development, 2019; 1.
- 28. Pornet C, Isikveren AT. Conceptual design of hybrid-electric transport aircraft, Prog. Aerosp. Sci., 2015;79: 114–135, doi: 10.1016/j.paerosci.2015.09.002.
- 29. Wang Y, Du J, Zhao Q, Zhang H. Optimization design and analysis of power management for serial hybrid- electric propulsion system under aircraft/engine integrated framework, Int. J. Aeronaut. Sp. Sci., 2024; 25(2); 319–330, doi: 10.1007/s42405-023-00674-5.
- 30. Mashamba TM, Wen J, Spataru C, Weng Y, Lv X. characteristic investigation of a novel aircraft sofc/gt hybrid system under varying operational parameters, Appl. Sci., 2024; 14(8), doi: 10.3390/app14083504.
- 31. Andrych-Zalewska M, Chlopek Z, Merkisz J, Pielecha J. Research on exhaust emissions in dynamic operating states of a combustion engine in a real driving emissions test, Energies, 2021; 14(18), doi: 10.3390/en14185684.
- 32. Ludowicy J, Rings R, Finger D F, Braun C. Sizing studies of light aircraft with serial hybrid propulsion systems, Deutsche Gesellschaft für Luftund Raumfahrt-Lilienthal-Oberth eV, 2018. doi: 10.25967/480226.
- 33. Finger DF, Braun C, Bil C. Comparative assessment of parallel-hybrid-electric propulsion systems for four different aircraft, J. Aircr. 2020; 57(5): 843– 853, doi: 10.2514/1.C035897.
- 34. A.S. Agency and European, Data Sheet Data Sheet, 2015. [Online]. Available: http://www.papersearch. net/view/detail.asp?detail_key=10000715.
- 35. Aircraft Engine Installation Manual ASz-62IR-16E, Approved by EASA, Type Certificate EASA.E.140 14.06.2013; 2.
- 36. Ankur K, Avinash KA. Lean-burn combustion in direct-injection spark-ignition engines. Alternative Fuels and Advanced Combustion Techniques as Sustainable Solutions for Internal Combustion Engines, First Online: 16 May 2021; 186: 281–317, Accesses, Part of the Energy, Environment, and Sustainability book series, doi: 10.1007/978-981-16-1513-9_12.
- 37. Sharma N, Agarwal AK. Gasoline direct injection engines and particulate emissions BT – Air pollution and control, N. Sharma, A.K. Agarwal,P. Eastwood, T. Gupta, and A.P. Singh, Eds. Singapore: Springer Singapore, 2018; 87–105. doi: 10.1007/978-981-10-7185-0_6.
- 38. Wendeker M, Jakliński P, Czarnigowski J. Experimental anałysis of automotive engine conditions of operation. E Eksploatacja i Niezawodnosc – Maintenance and Reliability” 2000; 6: 19–28, Lublin, doi: dx.doi.org/10.17531/ein.
- 39. Huang Y, Surawski NC, Organ B, Zhou JL, Tang OHH, Chan FFC, Fuel consumption and emissions performance under real driving: Comparison between hybrid and conventional vehicles, Sci. Total Environ., 2019; 659: 275–282, doi: 10.1016/j. scitotenv.2018.12.349
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ce1a1187-e026-47fb-8f21-59da2745dbdf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.