PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Irrigation with treated wastewaters and the protection of Hennaya groundwater – Tlemcen, Algeria

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Nawadnianie oczyszczonymi ściekami a ochrona wód gruntowych na obszarze Hennaya – Tlemcen, Algieria
Języki publikacji
EN
Abstrakty
EN
The Henaya Irrigated Perimeter (HIP) is an agricultural area irrigated by treated wastewater (TWW) of Ain El Hout treatment plant. Various analyses have shown that i) this water has low concentration of heavy metals and toxic elements, ii) the average values of the physicochemical parameters for 136 samples are satisfactory (29.2 mg O2∙dm–3 for chemical oxygen demands – COD, 13.14 mg O2∙dm–3 for biological oxygen demands – BOD, 14.2 mg∙dm–3 of suspended matter – SM, 1.82 mg∙dm–3 of N-NO3, 7.7 for pH and 927.74 μS∙cm–1 for electric conductivity – EC). Thirdly, it contains a high number of bacteria and nematodes (7200 CFU∙(100 dm3)–1 for faecal coliforms and 30 eggs∙dm–3 for intestinal Nematodes) which makes it dangerous for groundwater contamination. The objective in this work is to characterize the TWW and evaluate the impact of it use for irrigation on the quality of Hennaya groundwater. Before this, one has to prove that there is an amount of TWW that feeds the water table to show that there is a risk of pollution. We then estimated the aquifer minimum recharge value by TWW using the Thormthwaite method. The estimation has given 92 mm which is an important quantity. The results of the groundwater microbiological analyses reveal no sign of contamination. The cause is the efficiency of the degradation of pollutants of the Vadose zone. The soil purifying power Md of the HIP was evaluated by the Rehse method and gave values ranging from 2.1 to 12.7 which indicated a complete purification.
PL
Obszar nawodnień Hennaya to grunty rolnicze nawadniane oczyszczonymi ściekami z oczyszczalni Ain El Hout. W wyniku analizy stwierdzono, że w oczyszczonych ściekach stężenia metali ciężkich i substancji toksycznych jest małe, a średnie wartości parametrów fizycznych i chemicznych mierzonych w 136 próbkach są zadowalające (ChZT – 29,2 mg O2∙dm–3, BZT – 13,14 mg O2∙dm–3, zawiesina – 14,2 mg∙dm–3, N-NO3 – 1,82 mg∙dm–3, pH – 7.7 i przewodnictwo – 927,74 μS∙cm–1). Ścieki zawierają dużą liczbę bakterii coli pochodzenia kałowego (7200 jtk∙(100 dm3)–1) i jaj nicieni przewodu pokarmowego (30 jaj∙dm–3), co stanowi zagrożenie dla jakości wód gruntowych. Celem badań była analiza oczyszczonych ścieków i ocena ich wpływu na wody gruntowe nawadnianych nimi obszarów. Wstępnie należało dowieść, że ścieki zasilają wody gruntowe i istnieje ryzyko zanieczyszczenia. Za pomocą metody Thormthwaite’a oszacowano minimalne zasilanie wód podziemnych – 92 mm, czyli jest to znacząca ilość ścieków. Nie stwierdzono mikrobiologicznych zanieczyszczeń wód gruntowych. Przyczyną tego jest zdolność strefy aeracji do redukcji zanieczyszczeń. Redukcję zanieczyszczeń przez gleby nawadnianej strefy oceniano metodą Rehse, a uzyskane wartości wynoszące od 2,1 do 12,7 wskazują na całkowite oczyszczenie.
Wydawca
Rocznik
Tom
Strony
19--27
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
  • Abou Bekr Belkaid University, Faculty of Technology, Valorisation of Water Resources Laboratory, BP 230, 13000 Tlemcen, Algeria
  • Abou Bekr Belkaid University, Faculty of Technology, Valorisation of Water Resources Laboratory, Tlemcen, Algeria
  • Abou Bekr Belkaid University, Faculty of Technology, Valorisation of Water Resources Laboratory, Tlemcen, Algeria
Bibliografia
  • ABD EL LATEEF E.M., HALL J.E., LAWRENCE P.C., NEGM M.S. 2006. Cairo-East Bank effluent re-use study 3 – Effect of field crop irrigation with secondary treated wastewater on biological and chemical properties of soil and groundwater. Biologia. Vol. 61 (19) p. S240–S245.
  • ANTOLIN M.A., PASCUAL I., GARCIA C., POLO A., SANCHEZ-DIAZ M. 2005. Growth, yield and solute content of barley in soils treated with sewage sludge under semiarid Mediterranean conditions. Field Crops Research. Vol. 94 (2–3) p. 224–237. DOI 10.1016/j.fcr.2005.01.009.
  • Arrêté interministériel du 02.01.2012 fixant les spécifications des eaux usées épurées utilisées à des fins d’irrigation [Interministerial order of 02.01.2012 setting specifications for treated wastewater used for irrigation purposes]. Journal Officiel de la Republique Algerienne. No. 41. 15.07.2012 p. 18–21.
  • AZIZI S., KAMIKA I., TEKERE M. 2016. Evaluation of heavy metal removal from wastewater in a modified packed bed biofilm reactor. PloS ONE. Vol. 11(5) p. 1–13. DOI 10.1371/journal.pone.0155462.
  • BLANEY H.F., CRIDDLE W.D. 1950. Determining water requirements in irrigated area from climatological irrigation data. US Department of Agriculture, Soil Conservation Service. No. 96 pp. 48.
  • BUGAJSKI P., NOWOBILSKA-MAJEWSKA E., KUREK K. 2017. The variability of pollution load of organic, biogenic and chromium ions in wastewater inflow to the treatment plant in Nowy Targ. Journal of Water and Land Development. No. 35 (X–XII) p. 11–17. DOI 10.1515/jwld-2017-0063.
  • CANDELA L., FABREGAT S., JOSA A., SURIOL J.,VIGUES N., MAS J. 2007. Assessment of soil and groundwater impacts by treated urban wastewater reuse. A case study: Application in a golf course (Girona, Spain). Science of the Total Environment. No. 374 p. 26–35. DOI 10.1016/j.scitotenv.2006.12.028.
  • CHAOUI W., BOUSNOUBRA H., CHAOUI K. 2013. Étude de la vulnérabilité à la pollution des eaux superficielles et souterraines de la région de Bouchegouf (Nord-Est Algérien) [Study of vulnerability to pollution of surface and groundwater in the Bouchegouf region (North-East Algeria)]. Nature and Technologie. No. 08 p. 33–40.
  • DAHMOUNI M., HOERMANN G., JOUZDAN O., HACHICHA M. 2019. Spatio-temporal variability of hydrochemical parameters and heavy metals in shallow groundwater of the area of Cebala–Borj–Touil, irrigated with treated wastewater (Tunisia). Environmental Earth Sciences. Vol. 78(57) p. 1–14. DOI 10.1007/s12665-019-8056-z
  • Décret exécutif n°11–125 du 22.03.2011 relatif à la qualité de l’eau de consommation humaine [Executive Decree No. 11–125 of 22 March 2011 on the quality of water for human consumption]. Journal Officiel de la Republique Algerienne. Nr 18 of 23.03.2011 p. 6–9.
  • EKDAHL E.J., CARPIO-OBESO M.P., BORKOVICH J. 2009. Using GeoTracker GAMA to investigate nitrate concentrations in California groundwater, 1980–2008, presented at Groundwater Monitoring [Design, Analysis, Communication, and Integration with Decision Makking Conference]. [25–26.02.2009 Orange, CA].
  • ELKAYAM R., MICHAIL M., MIENIS O., KRAITZER T. 2015. Soil aquifer treatment as disinfection unit. Journal of Environmental Engineering. Vol. 141(12) p. 1–7.
  • ES SAOUINI H., AMHARREF M., BERNOUSSI A. 2017. Comparative assessment of vulnerability by DRASTIC and TCR methods: application to the R'Mel aquifer, Morocco. Journal of Environmental Hydrology. Vol. 25, 7 p. 1–10.
  • FAO 1987. Réponse des rendements à l'eau [Response of water yields] [online]. Irrigation and Drainage Paper. No. 33. Rome. Food and Agriculture Organization. [Access 06.04.2019]. Available at: https://books.google.dz/Books
  • FAO 2000. Crop evapotranspiration [online]. Irrigation and Drainage Paper. No. 56. Rome. Food and Agriculture Organization. [Access 29.12.2018]. Available at: http://academic.uprm.edu/abe/backup2/tomas/fao%2056. pdf
  • FAO 2003. L'irrigation avec des eaux usées traitees [Irrigation with treated wastewater. User manual] [online]. Rome. Food and Agriculture Organization. [Access 29.12.2018]. Available at: https://www.pseau.org/outils/ouvrages/fao_irrigation_avec_des_eaux_usees_traitees_2003.pdf
  • FAO 2013. Bonnes pratiques d’irrigation [Good irrigation practices]. Annex 1 [online]. Rome. Food and Agriculture Organization. [Access 22.03.2019]. Available at: https://www.who.int/water_sanitation_health/wastewater/Volume2_annex1_fr.pdf
  • FYLYPCHUK V., INDUCHNY S., PEARCE P., FYLYPCHUK L., MARTYNOV S. 2017. Application of expanded polystyrene filter for tertiary treatment of domestic waste effluent in the UK. Journal of Water and Land Development. No. 35 p. 41–47. DOI 10.1515/jwld-2017-0066.
  • GÓMEZ-LÓPEZ M.D., BAYO J., GARCÍA-CASCALES M.S., ANGOSTO J.M. 2009. Decision support in disinfection technologies for treated wastewater reuse. Journal of Cleaner Production. No. 17 p. 1504–1511.
  • GUNDUZ O., TURKMAN A., DOGANLAR D.U. (eds.) 2006. Alternative formulations for the reuse of treated wastewater in menemen plain irrigation scheme. In: Integrated urban water resources management. Eds. P. Hlavinek, T. Kukharchyk, J. Marsalek, I. Mahrikova. Switzerland. Springer p. 281–290.
  • HASSEN A., MAHROUK M., OUZARI H., CHERIF M., BOUDABOUS A., DAMELINCOURT J.J. 2000. UV disinfection of treated wastewater in a large-scale pilot plant and inactivation of selected bacteria in a laboratory UV device. Bioresource Technology. No. 74 p. 141–150.
  • HOWARD I., ESPIGARES E., LARDELLI P., MARTIN J.L., ESPIGARES M. 2004. Evaluation of microbiological and physicochemical indicators for wastewater treatment. Environmental Toxycology. Vol. 19 (3) p. 241–249.
  • LIXANDRU M. 2017. Heavy metals contamination: Causes, symptoms and side effects [online]. [Access 20.03.2019]. Available at: https://www.natureword.com/heavy-metalscontamination-causes-symptoms-and-side-effects/
  • LONIGRO A., RUBINO P., LACASELLA V., MONTEMURRO N. 2016. Faecal pollution on vegetables and soil drip irrigated with treated municipal wastewaters. Agricultural Water Management. No. 174 p. 66–73.
  • PERARNAUD V., RAYNAL N. 1991. Agrométéorologie [Agrometeorology]. Cours et Manuels. No. 4. Ecole Nationale de la Métérologie. Météo-France pp. 183.
  • RAHIMI M.H., KALANTARI N., SHARIFIDOOST M., KAZEMI M. 2018. Quality assessment of treated wastewater to be reused in agriculture. Global Journal of Environmental Science and Management. Vol. 4(2) p. 217–230.
  • REHSE W. 1977. Elimination und Abbau von organischen Fremdstoffen, pathogenen Keimen und Viren in Lockergestein. Ein Beitrag zur Dimensionierung der Zone II (Engere Schutzzone) für Kies-Sand-Grundwasserleiter [Elimination and degradation of organic waste substances, pathogenic bacteria and viruses in porous sediments. A contribution to the dimensioning of the zone II (Engere Schutzzone) for gravel-sand aquifers]. Zeitschrift der Deutschen Geologischen Gesellschaft. Nr 128 p. 319–329.
  • RIZZO L., SELCUK H., NIKOLAOU A. D., MERIÇ PAGANO S., BELGIORNO V. 2014. A comparative evaluation of ozonation and heterogeneous photocatalytic oxidation processes for reuse of secondary treated urban wastewater. Desalination and Water Treatment. Vol. 52 (7–9) p. 1414–1421. DOI 10.1080/19443994.2013.787953.
  • SHARMA S.K., KENNEDY M.D. 2016. Soil aquifer treatment for wastewater treatment and reuse. International Biodeterioration and Biodegradation. No. 119 p. 671–677. DOI 10.1016/j.ibiod.2016.09.013.
  • SHIRAZI S.M., ADHAM M.I., ZARDARI N.H., ISMAIL Z., IMRAN H.M., MANGRIO M.A. 2015. Groundwater quality and hydrogeological characteristics of Malacca state in Malaysia. Journal of Water and Land Development. No. 24 p. 11–19. DOI 10.1515/jwld-2015-0002.
  • SMOROŃ S. 2016. Quality of shallow groundwater and manure effluents in a livestock farm. Journal of Water and Land Development. No. 29 p. 59–66. DOI 10.1515/jwld-2016-0012.
  • Technoexporstroy 1971. Etude d’aménagement hydraulique de la plaine de Hennaya [Direction des resources en eau] [Study of hydraulic development of the plain of Hennaya] [Direction of water resources]. [Tlemcen city].
  • THORNTHWAITE C.W., MATHER J.R. 1955. The water balance [online]. Publications in Climatology. Vol. 8. No. l. Centerton, New Jersey. Drexel Institute of Technology. Laboratory of Climatology. [Access 11.01.2019]. Available at: https://oregondigital.org/downloads/oregondigital:df70pr001
  • USGS 2017. Unsaturated zone resources & information [online]. Reston. United States Geological Survey. [Access 16.03.2019]. Available at: http://water.usgs.gov/ogw/unsaturated.html
  • ÜSTÜN G.E. 2009. Occurrence and removal of metals in urban wastewater treatment plants. Journal of Hazardous Materials. No. 172 (2–3) p. 833–838. DOI 10.1016/j.jhazmat.2009.07.073.
  • WEI L., QIN K., ZHAO Q., WANG K., KABUTEY F.T., CUI F. 2016. Utilization of artificial recharged effluent for irrigation: pollutants’ removal and risk assessment. Journal of Water Reuse and Desalination. Vol. 7(1) p. 77–87. DOI 10.2166/wrd.2016.134.
  • ZHAO L. XIA J., XU CH.-Y., WANG Z., SOBKOWIAK L. 2013. Evapotranspiration estimation methods in hydrological models. Journal of Geographical Sciences. Vol. 23(2) p. 359–369. DOI 10.1007/s11442-013-1015-9.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ce19744b-e7fa-4f68-bf3e-6702d24569e5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.