PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Struvite precipitation from the liquid fraction of the digestate of a municipal waste biogas plant

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Currently, municipal waste biogas plant digestate is treated both as an alternative fertilizer and as a potential source of water. In practice, before advanced purification technologies, the liquid fraction of the digestate is subjected to pretreatment, aiming also at recovering the dissolved nutrients and making them into a concentrated fertilizer, e.g., by struvite precipitation. In this study, the possibility of struvite (MgNH4PO4 center dot 6H2O) precipitation from the liquid fraction of municipal digestate was determined. In the experiments, MgCl2 and NaH2PO4 were added to the treated solution as a complementary source of magnesium and phosphorus. Their doses were chosen to achieve the most favorable conditions for controlling struvite precipitation. The results obtained confirmed the possibility of struvite precipitation from the liquid fraction of municipal digestate. The process realized for pH 9.0, temperature 20-23 degrees C, molar ratio N:Mg:P = 5.13:1:1 and 1:1.1:1.1, reaction time 5 min with a stirring rate of 160 rpm, provides a high efficiency of struvite precipitation from the liquid fraction of digestate. From the viewpoint of process economics (less amount of reactants added with similar process efficiency), a molar ratio of N:Mg:P = 1:1.1:1.1 was found to be optimal for the reaction of precipitation.
Słowa kluczowe
Rocznik
Strony
85--99
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • Wrocław University of Science and Technology, Faculty of Environmental Engineering, Department of Environment Protection Engineering, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Wrocław University of Science and Technology, Faculty of Chemistry, Department of Process Engineering, Technology of Polymer and Carbon Materials, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Wrocław University of Science and Technology, Faculty of Environmental Engineering, Department of Environment Protection Engineering, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
  • [1] GORAZDA K., WZOREK Z., JODKO M., NOWAK A.K., Struvite – physicochemical properties and applications. Part. I, Chemik, 2004, 57 (1), 9–13 (in Polish).
  • [2] RAHMAN M.M., SALLEH M.A.M., RASHID U., AHSAN A., HOSSAIN M.M., RA C.S., Production of slow release crystal fertilizer from wastewaters through struvite crystallization. A review, Arabian J. Chem., 2014, 7 (1), 139–155. DOI: 10.1016/j.arabjc.2013.10.007.
  • [3] TANSEL B., LUNN G., MONJE O., Struvite formation and decomposition characteristics for ammonia and phosphorus recovery: A review of magnesium-ammonia-phosphate interactions, Chemosphere, 2018, 194, 504–514. DOI: 10.1016/j.chemosphere.2017.12.004.
  • [4] MOULESSEHOUL A., GALLART-MATEU D., HARRACHE D., DJAROUD S., DE LA GUARDIA M., KAMECHE M., Conductimetric study of struvite crystallization in water as a function of pH, J. Cryst. Growth, 2017, 471, 42–52. DOI: 10.1016/j.jcrysgro.2017.05.011.
  • [5] AGRAWAL S., GUEST J.S., CUSICK R.D., Elucidating the impacts of initial supersaturation and seed crystal loading on struvite precipitation kinetics, fines production, and crystal growth, Water Res., 2018, 132, 252–259. DOI: 10.1016/j.watres.2018.01.002.
  • [6] HERMASSI M., Simultaneous ammonium and phosphate recovery and stabilization from urban sewage sludge anaerobic digestates using reactive sorbents, Sci. Total Environ., 2018, 630, 781–789. DOI: 10.1016/j.scitotenv.2018.02.243.
  • [7] ZENG L., LI X., Nutrient removal from anaerobically digested cattle manure by struvite precipitation, J. Environ. Eng. Sci., 2006, 5 (4), 285–294. DOI: 10.1139/S05-027.
  • [8] UYSAL A., YILMAZEL Y.D., DEMIRER G.N., The determination of fertilizer quality of the formed struvite from effluent of a sewage sludge anaerobic digester, J. Hazard. Mater., 2010, 181 (1–3), 248–254. DOI: 10.1016/j.jhazmat.2010.05.004.
  • [9] CIEŚLIK B., KONIECZKA P., A review of phosphorus recovery methods at various steps of wastewater treatment and sewage sludge management. The concept of no solid waste generation and analytical methods, J. Cleaner Prod., 2017, 142, 1728–1740. DOI: 10.1016/j.jclepro.2016.11.116.
  • [10] CRUTCHIK D., GARRIDO J.M., Kinetics of the reversible reaction of struvite crystallisation, Chemosphere, 2016, 154, 567–572. DOI: 10.1016/j.chemosphere.2016.03.134.
  • [11] RONTELTAP M., MAURER M., HAUSHERR R., GUJER W., Struvite precipitation from urine. Influencing factors on particle size, Water Res., 2010, 44 (6), 2038–2046. DOI: 10.1016/j.watres.2009.12.015.
  • [12] HANHOUN M., MONTASTRUC L., AZZARO-PANTEL C., BISCANS B., FRÈCHE M., PIBOULEAU L., Simultaneous determination of nucleation and crystal growth kinetics of struvite using a thermodynamic modeling approach, Chem. Eng. J., 2013, 215–216. DOI: 10.1016/j.cej.2012.10.038.
  • [13] ÇELEN I., TÜRKER M., Recovery of ammonia as struvite from anaerobic digester effluents, Environ. Techn. (U.K.), 2001, 22 (11), 1263–1272. DOI: 10.1080/09593332208618192.
  • [14] TADDEO R., HONKANEN M., KOLPPO K., LEPISTÖ R., Nutrient management via struvite precipitation and recovery from various agroindustrial wastewaters: Process feasibility and struvite quality, J. Environ. Manage., 2018, 212, 433–439. DOI: 10.1016/j.jenvman.2018.02.027.
  • [15] LE CORRE K.S., VALSAMI-JONES E., HOBBS P., JEFFERSON B., PARSONS S.A., Agglomeration of struvite crystals, Water Res., 2007, 41 (2), 419–425. DOI: 10.1016/j.watres.2006.10.025.
  • [16] BARBOSA S.G., PEIXOTO L., MEULMAN B., ALVES M.M., PEREIRA M.A., A design of experiments to assess phosphorous removal and crystal properties in struvite precipitation of source separated urine using different Mg sources, Chem. Eng. J., 2016, 298, 146–153. DOI: 10.1016/j.cej.2016.03.148.
  • [17] BURNS R.T., MOODY L.B., CELEN I., BUCHANAN J.R., Optimization of phosphorus precipitation from swine manure slurries to enhance recovery, Water Sci. Techn., 2003, 48 (1), 139–146. DOI: 10.2166/wst.2003.0037.
  • [18] KABDAŞLI I., PARSONS S.A., TÜNAY O., Effect of major ions on induction time of struvite precipitation, Croatica Chem. Acta, 2006, 79 (2), 243–251.
  • [19] BATTISTONI P., PAVAN P., PRISCIANDARO M., CECCHI F., Struvite crystallization: A feasible and reliable way to fix phosphorus in anaerobic supernatants, Water Res., 2000, 34 (11), 3033–3041. DOI:10.1016/S0043-1354(00)00045-2.
  • [20] MATSUMIYA Y., YAMASITA T., NAWAMURA Y., Phosphorus removal from sidestreams by crystallisation of magnesium-ammonium-phosphate using seawater, Journal of the Chartered Institution of Water and Environmental Management, 2000, 14 (4), 291–296. DOI: 10.1111/j.1747-6593.2000.tb00263.x.
  • [21] FANG C., ZHANG T., JIANG R., OHTAKE H., Phosphate enhance recovery from wastewater by mechanism analysis and optimization of struvite settleability in fluidized bed reactor, Sci. Rep., 2016, 6, 32215. DOI: 10.1038/srep32215.
  • [22] KRUK D.J., ELEKTOROWICZ M., OLESZKIEWICZ J.A., Struvite precipitation and phosphorus removal using magnesium sacrificial anode, Chemosphere, 2014, 101, 28–33. DOI: 10.1016/j.chemosphere.2013.12.036.
  • [23] SICILIANO A., Assessment of fertilizer potential of the struvite produced from the treatment of methanogenic landfill leachate using low-cost reagents, Environ. Sci. Poll. Res., 2016, 23 (6),5949–5959. DOI: 10.1007/s11356-015-5846-z.
  • [24] Chempur, Safety data sheet for the chemical substance sodium dihydrogen phosphate anhydrous, http://chempur.pl/pliki/karty_charakterystyk/sodu_fosforan_I_bezwodny.pdf (accessed Aug. 16, 2021) (in Polish).
  • [25] Chempur, Safety data sheet for the chemical substance magnesium chloride, http://chempur.pl/pliki/karty_charakterystyk/magnezu_chlorek_6h.pdf (accessed Aug. 16, 2021) (in Polish).
  • [26] JAFFER Y., CLARK T.A., PEARCE P., PARSONS S.A., Potential phosphorus recovery by struvite formation, Water Res., 2002, 36 (7), 1834–1842. DOI: 10.1016/S0043-1354(01)00391-8.
  • [27] MANZOOR M.A.P., MUJEEBURAHIMAN M., DUWAL S.R., REKHA P.D., Investigation on growth and morphology of in vitro generated struvite crystals, Biocat. Agr. Biotechn., 2019, 17, 566–570. DOI: 10.1016/j.bcab.2019.01.023.
  • [28] LI H., YAO Q.-Z., WANG Y.-Y., LI Y.-L., ZHOU G.-T., Biomimetic synthesis of struvite with biogenic morphology and implication for pathological biomineralization, Sci. Rep., 2015, 5 (1), 7718. DOI: 10.1038/srep07718.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ce114f78-0366-41c2-9de2-7280ce4e4893
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.