Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we generalize the notions of the Köthe-Toeplitz duals of sequence spaces by introducing the concepts of bicomplex α-dual, bicomplex β-dual and bicomplex γ-dual, and also we compute them for some bicomplex sequence spaces lp(𝔹ℂ) for 1 ≤ p ≤ ∞, c0(𝔹ℂ) and c(𝔹ℂ). Furthermore, we define a concept of bicomplex multiplier space as the bicomplex version of multiplier space of two sequence spaces and support this definition with examples.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
301--310
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
- Department of Mathematics, Ondokuz Mayıs University, Samsun, Turkey
autor
- Department of Mathematics, Ondokuz Mayıs University, Samsun, Turkey
Bibliografia
- [1] D. Alpay, M. E. Luna-Elizarrarás, M. Shapiro and D. C. Struppa, Basics of Functional Analysis with Bicomplex Scalars, and Bicomplex Schur Analysis, Springer Briefs Math., Springer, Cham, 2014.
- [2] J. Banaś and M. Mursaleen, Sequence Spaces and Measures of Noncompactness with Applications to Differential and Integral Equations, Springer, New Delhi, 2014.
- [3] F. Başar, Summability Theory and its Applications, Bentham Science, Oak Park, 2012.
- [4] F. Başar and H. Dutta, Summable Spaces and Their Duals, Matrix Transformations and Geometric Properties, Monogr. Res. Notes Math., CRC Press, Boca Raton, 2020.
- [5] S. Bera and B. C. Tripathy, Statistical bounded sequences of bi-complex numbers, Probl. Anal. Issues Anal. 12(30) (2023), no. 2, 3-16.
- [6] H. Dutta, On Köthe-Toeplitz and null duals of some difference sequence spaces defined by Orlicz functions, Eur. J. Pure Appl. Math. 2 (2009), no. 4, 554-563.
- [7] H. Dutta, Generalized difference sequence spaces defined by Orlicz functions and their Köthe-Toeplitz and null duals, Thai J. Math. 8 (2010), no. 1, 11-19.
- [8] M. E. Luna-Elizarrarás, M. Shapiro, D. C. Struppa and A. Vajiac, Bicomplex Holomorphic Functions, Front. Math., Birkhäuser/Springer, Cham, 2015.
- [9] E. Malkowsky, Absolute and ordinary Köthe-Toeplitz duals of some sets of sequences and matrix transformations, Publ. Inst. Math. (Beograd) (N. S.) 46(60) (1989), 97-103.
- [10] E. Malkowsky and E. Savas, Matrix transformations between sequence spaces of generalized weighted means, Appl. Math. Comput. 147 (2004), no. 2, 333-345.
- [11] V. Nezir, H. Dutta and S. Yıldırım, A large class in Köthe-Toeplitz duals of generalized Cesàro difference sequence spaces with fixed point property for nonexpansive mappings, Filomat 36 (2022), no. 17, 5795-5802.
- [12] G. B. Price, An Introduction to Multicomplex Spaces and Functions, Monogr. Textbooks Pure Appl. Math. 140, Marcel Dekker, New York, 1991.
- [13] K. Raj, A. Esi and C. Sharma, Orlicz-lacunary bicomplex sequence spaces of difference operators, Filomat 37 (2023), no. 8, 2421-2435.
- [14] N. Sager and B. Sağır, On completeness of some bicomplex sequence spaces, Palest. J. Math. 9 (2020), no. 2, 891-902.
- [15] B. Sağır, N. Değirmen and C. Duyar, Bicomplex matrix transformations between c0 and c in bicomplex setting, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 85 (2023), no. 4, 115-128.
- [16] C. Segre, Le rappresentazioni reali delle forme complesse e gli enti iperalgebrici, Math. Ann. 40 (1892), no. 3, 413-467.
- [17] A. Wilansky, Summability Through Functional Analysis, Elsevier, Amsterdam, 2000.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ce102826-ae2a-4194-a9f9-45f4847833bf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.