PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Elevator drum-pad brake mechanisms: redundant constraints and reliability rise opportunity

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article deals with mechanical engineering, and transport machines, namely the elevator brake mechanism structure. The article aims to study the number and location of redundant constraints in elevator brake mechanisms and to depict their impact on brake reliability and transportation safety. To study the structure of the mentioned mechanisms, we used classical methods of applied mechanics plus the circuit method of L. Reshetov. The structure of crane disc brakes with short-stroke DC electromagnet and long-stroke AC electromagnet mechanisms was analyzed and redundant constraints were identified. It was shown that the presence of redundant constraints causes friction torque oscillation and lead to load distribution unevenness between brake elements. Based on the provided analysis, construction improvement events should be implemented to remove the most dangerous redundant constraints.
Rocznik
Tom
Strony
229--242
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
  • Faculty of Engineering and Transport, Kherson National Technical University, Beryslav highway, 24, 73008, Kherson, Ukraine
  • Institute of Mechanical Engineering and Transport, Lviv Polytechnic National University, Bandery ave., 12, 79000, Lviv, Ukraine
  • Faculty of Marine Energetic, Kherson State Maritime Academy, Independence ave, 20, 73000, Kherson, Ukraine
  • Faculty of Marine Energetic, Kherson State Maritime Academy, Independence ave, 20, 73000, Kherson, Ukraine
  • Faculty of Engineering and Transport, Kherson National Technical University, Beryslav highway, 24, 73008, Kherson, Ukraine
Bibliografia
  • 1. Liang X. 2017. “Failure Mechanism Analysis of Elevator Brake”. 4th International Conference on Machinery, Materials and Computer (MACMC 2017): 405-409.
  • 2. Vu N.-T., L.-D. Phan, V.-D. Nguyen, Q.-B. Vu. 2021. “Research of Determining Low-Reliability Elements of Multiple-Flows Compressed Air Braking System Based on Goal-Oriented (GO) Methodology”. International Journal of Automotive and Mechanical Engineering 18(2): 8814-8824. DOI: 10.15282/ijame.18.2.2021.19.0675.
  • 3. Ren Zh. 2022. “The Performance Analysis of Elevator Brake”. Journal of Physics: Conference Series 2463: 012047. DOI: 10.1088/1742-6596/2463/1/012047.
  • 4. Peng Q., Zh. Li, H. Yuan, G. Huang, S. Li, X. Sun. 2018. “A Model-Based Unloaded Test Method for Analysis of Braking Capacity of Elevator Brake”. Advanced in Material Science and Engineering 2018: 1-10. DOI: 10.1155/2018/8047490.
  • 5. Magaswaran K., A.S. Phuman Singh, M.Z. Hassan. 2022. “A New Method in the Identification of Noise and Vibration Characteristics of Automotive Disk Brakes in the Low Frequency Domain”. International Journal of Automotive and Mechanical Engineering 9: 1564-1577. DOI: 10.15282/ijame.9.2013.7.0129.
  • 6. Slavchev Y., L. Dimitrov, Y. Dimitrov. 2018. “3-D Computer research and comparative analysis of dynamic aspects of drum brakes and caliper disc brakes”. Archive of Mechanical Engineering 2: 253-276. DOI: 10.24425/123024.
  • 7. Yevtushenko A., K. Topczewska, M. Kuciej. 2021. “Analytical determination of the brake temperature mode during repetitive short-term braking”. Materials 14: 1912. DOI: 10.3390/ma14081912.
  • 8. Ungureanu M., N. Medan, S. Ungureanu, K. Nadolny 2022. “Tribological Aspects Concerning the Study of Overhead Crane Brakes”. Materials 15: 6549. DOI: 10.3390/ma15196549.
  • 9. Sahari B.B., M.M. Shahzamanian, M. Bayat, Z.N. Ismarrubie, F. Mustapha. 2022. “Comparison of Thermoelastic Results in Two Types of Functionally Graded Brake Discs”. Int. J. Automot. Mech. Eng. 5: 660-669. DOI: 10.15282/ijame.5.2012.12.0053.
  • 10. Satyajit R.P., M.S. Suresh. 2022. “Experimental Studies on Magnetorheological Brake for Automotive Application”. International Journal of Automotive and Mechanical Engineering 15(1): 4893-4908. DOI: 10.15282/ijame.15.1.2018.2.0381.
  • 11. Zalyubovskii M.G., I.V. Panasyuk. 2020. “On the Study of the Basic Design Parameters of a Seven-Link Spatial Mechanism of a Part Processing Machine”. International Applied Mechanics 56: 54-64. DOI: 10.1007/s10778-020-00996-x.
  • 12. Wang Bo. 2024. “Study on the Performance Test Method of the Elevator Brake”. Mechatronics and Automation Technology 46: 636-645. DOI: 10.3233/ATDE231158.
  • 13. Zdanevich S.S., R.P. Pogrebnyak, S.V. Zdanevich. 2018. “Structural analysis and rational design of mechanisms of cross-roll tube straightening machines”. Science and Transport Progress. Bulletin of Dnipropetrovs'k National University of Railway Transport 5(77): 65-73. DOI: 10.15802/stp2018/147630.
  • 14. Sydorenko I., E. Kravtsov, I. Prokopovych. 2019. “Reducing the Reliability of Equipment as a result of the Reduction of the Culture of Production”. Proceedings of Odessa Polytechnic University 3: 5-13. DOI: 10.3390/ma15196549.
  • 15. Pogrebnyak R.P. 2015. “Structural analysis and rational design parallelogram arm gripping”. Metallurgy Theory and Practice 1-2: 123-125. DOI: 10.15802/stp2018/140547.
  • 16. Smirnov G.F., P.I. Shtitsko, A.P. Ivanova. 2007. “Redundant constraints in crane drum-pad brakes”. Lifting and Transport Technique 2: 101-114.
  • 17. Mata S.A., A.B. Torras, J.A. Cabrera et al. 2016. Fundamentals of Machine Theory and Mechanisms. Cham: Springer.
  • 18. Kolovsky M.Z., A.N. Evgrafov, Yu.A. Semenov, et al. 2000. Advanced theory of mechanisms and machines. Berlin: Springer.
  • 19. Ozols O.G. 1984. Theory of Mechanisms and Machines. Moscow: Nauka.
  • 20. Reshetov L. 1986. Self-Aligning Mechanisms. Moscow: Mir Publishers.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ce0fdede-82ed-4101-b776-d6b59f10f5b9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.