Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Grinding force directly affects the grinding equipment performance, the grinding tool wear, and the machined surface quality, and it is an important grinding performance indicator. In this paper, a tangential force prediction model is established for robot abrasive belt grinding (RABG) of nickel-based superalloy. According to the shape characteristics of grits and the interaction mechanism between grits and workpiece, the tangential components of cutting force and frictional force on the grits are determined. On this basis, the tangential force prediction model is established by the grit protrusion height distribution and the elastic contact theory. In addition, according to the wear characteristics of the structured abrasive belt, the expression of grit distribution density (i.e. the number of grits per unit area) is obtained and applied to the tangential force model. The force model is evaluated by the verification experiment, and the results show that it has good prediction ability. At the same time, this paper discusses the influence of grinding parameters on tangential force, and reveals the material removal characteristics of RABG of nickel-based superalloy based on the analysis of the tangential force and the morphology characteristics of grinding surfaces and chips.
Czasopismo
Rocznik
Tom
Strony
art. no. e124, 2023
Opis fizyczny
Bibliogr. 47 poz., rys., tab., wykr.
Twórcy
autor
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
autor
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
autor
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
autor
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
autor
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
autor
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
autor
- Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
Bibliografia
- 1. Zhu DH, Feng XZ, Xu XH, Yang ZY, Li WL, Yan SJ, Ding H. Robotic grinding of complex components: a step towards efficient and intelligent machining - challenges, solutions, and applications. Robot Comput-Integr Manuf. 2020;65:101908. https://doi.org/10.1016/j.rcim.2019.101908.
- 2. Xie HL, Li JR, Liao ZY, Wang QH, Zhou XF. A robotic belt grinding approach based on easy-to-grind region partitioning. J Manuf Process. 2020;56:830-44. https://doi.org/10.1016/j.jmapro.2020.03.051.
- 3. Lv YJ, Peng Z, Qu C, Zhu DH. An adaptive trajectory planning algorithm for robotic belt grinding of blade leading and trailing edges based on material removal profile model. Robot Comput-Integr Manuf. 2020. https://doi.org/10.1016/j.rcim.2020.101987.
- 4. Wang ZL, Zou L, Duan L, Liu XF, Lv C, Gong MW, Huang Y. Study on passive compliance control in robotic belt grinding of nickel-based superalloy blade. J Manuf Process. 2021;68:168-79. https://doi.org/10.1016/j.jmapro.2021.07.020.
- 5. Li DW, Yang JX, Zhao H, Ding H. Contact force plan and control of robotic grinding towards ensuring contour accuracy of curved surfaces. Int J Mech Sci. 2022. https://doi.org/10.1016/j.ijmecsci.2022.107449.
- 6. Song KK, Xiao GJ, Chen SL, Liu XT, Huang Y. A new force-depth model for robotic abrasive belt grinding and confirmation by grinding of the Inconel 718 alloy. Robot Comput-Integr Manuf. 2023. https://doi.org/10.1016/j.rcim.2022.102483.
- 7. Qu SS, Yao P, Gong YD, Yang YY, Chu DK, Zhu QS. Modelling and grinding characteristics of unidirectional C-SiCs. Ceram Int. 2022;48(6):8314-24. https://doi.org/10.1016/j.ceramint.2021.12.036.
- 8. Sun Y, Jin LY, Gong YD, Wen XL, Yin GQ, Wen Q, Tang BJ. Experimental evaluation of surface generation and force time-varying characteristics of curvilinear grooved micro end mills fabricated by EDM. J Manuf Process. 2022;73:799-814. https://doi.org/10.1016/j.jmapro.2021.11.049.
- 9. Liu Q, Chen X, Wang Y, Gindy N. Empirical modelling of grinding force based on multivariate analysis. J Mater Process Technol. 2008;203(1-3):420-30. https://doi.org/10.1016/j.jmatprotec.2007.10.058.
- 10. Mishra VK, Salonitis K. Empirical estimation of grinding specific forces and energy based on a modified Werner grinding model. Proc CIRP. 2013;8:287-92. https://doi.org/10.1016/j.procir.2013.06.104.
- 11. Guo MX, Li BZ, Ding ZS, Liang SY. Empirical modeling of dynamic grinding force based on process analysis. Int J Adv Manuf Technol. 2016;86(9-12):3395-405. https://doi.org/10.1007/s00170-016-8465-z.
- 12. Rausch S, Odendahl S, Kersting P, Biermann D, Zabel A. Simulation-based prediction of process forces for grinding free-formed surfaces on machining centers. Proc CIRP. 2012;4:161-5. https://doi.org/10.1016/j.procir.2012.10.029.
- 13. Fu DK, Ding WF, Miao Q, Xu JH. Simulation research on the grinding forces and stresses distribution in single-grain surface grinding of Ti-6Al-4V alloy when considering the actual cutting-depth variation. Int J Adv Manuf Technol. 2017;91(9-12):3591-602. https://doi.org/10.1007/s00170-017-0084-9.
- 14. Zhang Y, Wu T, Li C, Wang YF, Geng YQ, Dong GJ. Numerical simulations of grinding force and surface morphology during precision grinding of leucite glass ceramics. Int J Mech Sci. 2022. https://doi.org/10.1016/j.ijmecsci.2022.107562.
- 15. Tang JY, Du J, Chen YP. Modeling and experimental study of grinding forces in surface grinding. J Mater Process Technol. 2009;209(6):2847-54. https://doi.org/10.1016/j.jmatprotec.2008.06.036.
- 16. Durgumahanti USP, Singh V, Rao PV. A new model for grinding force prediction and analysis. Int J Mach Tools Manuf. 2010;50(3):231-40. https://doi.org/10.1016/j.ijmachtools.2009.12.004.
- 17. Sun JL, Qin F, Chen P, An T. A predictive model of grinding force in silicon wafer self-rotating grinding. Int J Mach Tools Manuf. 2016;109:74-86. https://doi.org/10.1016/j.ijmachtools.2016.07.009.
- 18. Zhu DH, Xu XH, Yang ZY, Zhuang KJ, Yan SJ, Ding H. Analysis and assessment of robotic belt grinding mechanisms by force modeling and force control experiments. Tribol Int. 2018;120:93-8. https://doi.org/10.1016/j.triboint.2017.12.043.
- 19. Yan SJ, Xu XH, Yang ZY, Zhu DH, Ding H. An improved robotic abrasive belt grinding force model considering the effects of cut-in and cut-off. J Manuf Process. 2019;37:496-508. https://doi.org/10.1016/j.jmapro.2018.12.029.
- 20. Sun GY, Zhao LL, Ma Z, Zhao QL. Force prediction model considering material removal mechanism for axial ultrasonic vibration-assisted peripheral grinding of Zerodur. Int J Adv Manuf Technol. 2018;98(9-12):2775-89. https://doi.org/10.1007/s00170-018-2457-0.
- 21. Zhou K, Ding HH, Zhang SY, Guo J, Liu QY, Wang WJ. Modelling and simulation of the grinding force in rail grinding that considers the swing angle of the grinding stone. Tribol Int. 2019;137:274-88. https://doi.org/10.1016/j.triboint.2019.05.012.
- 22. Fang C, Yang CB, Cai LG, Zhao YS, Liu ZF. Predictive modeling of grinding force in the inner thread grinding considering the effect of grains overlapping. Int J Adv Manuf Technol. 2019;104(1-4):943-56. https://doi.org/10.1007/s00170-019-03925-6.
- 23. Zhang XH, Kang ZX, Li S, Shi ZY, Wen DD, Jiang J, Zhang ZC. Grinding force modelling for ductile-brittle transition in laser macro-micro-structured grinding of zirconia ceramics. Ceram Int. 2019;45(15):18487-500. https://doi.org/10.1016/j.ceramint.2019.06.067.
- 24. Li BK, Dai CW, Ding WF, Yang CY, Li CH, Kulik O, Shumyacher V. Prediction on grinding force during grinding powder metallurgy nickel-based superalloy FGH96 with electroplated CBN abrasive wheel. Chin J Aeronaut. 2021;34(8):65-74. https://doi.org/10.1016/j.cja.2020.05.002.
- 25. Gu P, Zhu CM, Tao Z, Yu YQ. A grinding force prediction model for SiCp/Al composite based on single-abrasive-grain grinding. Int J Adv Manuf Technol. 2020;109(5-6):1563-81. https://doi.org/10.1007/s00170-020-05638-7.
- 26. Zhou YG, Tian CC, Jia SQ, Ma LJ, Yin GQ, Gong YD. Study on grinding force of two-dimensional ultrasonic vibration grinding 2.5d-c/sic composite material. Crystals. 2023;13(1):151. https://doi.org/10.3390/cryst13010151.
- 27. Guo Y, Liu MH, Li CL. Modeling and experimental investigation on grinding force for advanced ceramics with different removal modes. Int J Adv Manuf Technol. 2020;106(11-12):5483-95. https://doi.org/10.1007/s00170-020-05013-6.
- 28. Jamshidi H, Budak E. An analytical grinding force model based on individual grit interaction. J Mater Process Technol. 2020. https://doi.org/10.1016/j.jmatprotec.2020.116700.
- 29. Cai SJ, Cai ZQ, Lin C. Modeling of the generating face gear grinding force and the prediction of the tooth surface topography based on the abrasive differential element method. CIRP J Manuf Sci Technol. 2023;41:80-93. https://doi.org/10.1016/j.cirpj.2022.11.022.
- 30. Zhou X, Xi F. Modeling and predicting surface roughness of the grinding process. Int J Mach Tools Manuf. 2002;42(8):969-77. https://doi.org/10.1016/S0890-6955(02)00011-1.
- 31. Wang GL, Wang YQ, Xu ZX. Modeling and analysis of the material removal depth for stone polishing. J Mater Process Technol. 2009;209(5):2453-63. https://doi.org/10.1016/j.jmatprotec.2008.05.041.
- 32. Johnson KL. Contact mechanics. Cambridge: Cambridge University Press; 1985.
- 33. Liu F, Wang W, Wang L, Wang G, Yun C. Effect of contact wheel’s deformation on cutting depth for robotic belt grinding. Chin J Mech Eng. 2017;53(5):86-92. https://doi.org/10.3901/JME.2017.05.086.
- 34. Harris B. Engineering composite materials. 2nd ed. London: IOM Communications Ltd; 1999.
- 35. Xie Y, Williams JA. The prediction of friction and wear when a soft surface slides against a harder rough surface. Wear. 1996;196(1-2):21-34. https://doi.org/10.1016/0043-1648(95)06830-9.
- 36. Zhao YW, Maietta DM, Chang L. An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow. J Tribol-Trans ASME. 2000;122(1):86-93. https://doi.org/10.1115/1.555332.
- 37. Liu Z, Sun J, Shen W. Study of plowing and friction at the surfaces of plastic deformed metals. Tribol Int. 2002;35(8):511-22. https://doi.org/10.1016/S0301-679X(02)00046-4.
- 38. Jourani A, Hagege B, Bouvier S, Bigerelle M, Zahouani H. Influence of abrasive grain geometry on friction coefficient and wear rate in belt finishing. Tribol Int. 2013;59:30-7. https://doi.org/10.1016/j.triboint.2012.07.001.
- 39. Cao JG, Wu YB, Lu D, Fujimoto M, Nomura M. Material removal behavior in ultrasonic-assisted scratching of SiC ceramics with a single diamond tool. Int J Mach Tools Manuf. 2014;79:49-61. https://doi.org/10.1016/j.ijmachtools.2014.02.002.
- 40. Rowe WB. Principles of modern grinding technology. 2nd ed. New York: William Andrew Inc; 2013.
- 41. Wu CL, Ding HY, Chen Y. Research on modeling method of relation between abrasive grain and material removal depth. China Mech Eng. 2011;22(3):300-4.
- 42. Fan WG, Liu YM, Wang WX, Li JY, Wang RQ. Research on modeling method of material removal for rail grinding by abrasive belt based on elastic Hertzian contact. Chin J Mech Eng. 2018;54(15):191-8. https://doi.org/10.3901/JME.2018.15.191.
- 43. Ding WF, Xu JH, Chen ZZ, Su HH, Fu YC. Grindability and surface integrity of cast nickel-based superalloy in creep feed grinding with brazed CBN abrasive wheels. Chin J Aeronaut. 2010;23:501-10. https://doi.org/10.1016/S1000-9361(09)60247-8.
- 44. Zhou WH, Tang JY, Chen HF, Shao W. A comprehensive investigation of surface generation and material removal characteristics in ultrasonic vibration assisted grinding. Int J Mech Sci. 2019;156:14-30. https://doi.org/10.1016/j.ijmecsci.2019.03.026.
- 45. Setti D, Arrabiyeh PA, Kirsch B, Heintz M, Aurich JC. Analytical and experimental investigations on the mechanisms of surface generation in micro grinding. Int J Mach Tools Manuf. 2020;149:103489. https://doi.org/10.1016/j.ijmachtools.2019.103489.
- 46. Ohbuchi Y, Obikawa T. Adiabatic shear in chip formation with negative rake angle. Int J Mech Sci. 2005;47:1377-92. https://doi.org/10.1016/j.ijmecsci.2005.05.003.
- 47. Denkena B, Köhler J, Kästner J. Chip formation in grinding: an experimental study. Prod Eng Res Dev. 2012;6:107-15. https://doi.org/10.1007/s11740-011-0360-8.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ce0be2a8-eda0-491d-8ac4-04e64151e471