Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evidence of wildfires during deposition of the Upper Silesian Keuper succession, southern Poland

Treść / Zawartość
Warianty tytułu
Języki publikacji
Charcoals from the Upper Triassic vertebrate-bearing clays of the Zawiercie area (Upper Silesia, S-Poland) were analyzed using petrographic methods, to reconstruct burning temperatures as well as taphonomic processes. SEM and reflected light microscopy show excellent preservation of charcoals most probable connected with early diagenetic permineralization by calcite. The charcoal was assigned to three morphotypes, probably corresponding to three different fossil taxa. Fusinite reflectance data suggest, that the highest temperature reached above 600 °C (fusinite reflectance of 3.59%), what counterparts to the lower limit crown fire temperature. The values for most of the samples are lower (ca. 1% to 2.5%) what is typical for surface fires. In many cases fusinite reflectance values depends on the measured zone within the sample. Such zonation formed due to charring tem- perature differences. In zones remote from the potential fire source, reflectance values gradually decreases. It implies that calculation of fire temperatures based on average fusinite reflectance values might be too far-reaching simplification. Occurrence of fungal hyphae within the charcoal supports the interpretation of a predomination of surface fire, consuming dead twigs and stems. The low content of micro-charcoals in charcoal-bearing rocks as well as rounded to sub-rounded shapes of large specimens indicates that they were transported after burning, deposited away from the burning area, and finally early diagenetic mineralization.
Słowa kluczowe
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
  • Faculty of Earth Sciences, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland
  • Wrocław Research Centre EIT + Ltd., Stabłowicka 147, 54-066 Wrocław, Poland
  • Senckenberg Forschungsinstitut und Naturmuseum Frankfurt, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
  • Faculty of Earth Sciences, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland
  • 1. Abu Hamad, A. M. B., Jasper, A. & Uhl, D., 2012. The record of Triassic charcoal and other evidence for palaeo-wildfires: Signal for atmospheric oxygen levels, taphonomic biases or lack of fuel? International Journal of Coal Geology, 96-97: 60-71.
  • 2. Abu Hamad, A. M. B., Jasper, A. & Uhl, D., 2014. Wood remains from the Late Triassic (Carnian) of Jordan and their palaeoenvironmental implications. Journal of African Earth Sciences, 95: 168-174.
  • 3. Belcher, C. M., Mander, L., Rein, G., Jervis, F. X., Haworth, M., Hesselbo, S. P., Glasspool, I. J. & McElwain, J. C., 2010. Increased fire activity at the Triassic/Jurassic boundary in Greenland due to climate-driven floral change. Nature Geoscience, 3: 426-429.
  • 4. Belcher, C. M. & McElvain, J. C., 2008. Limits for combustion in low O2 redefine paleoatmospheric predictions for the Mesozoic. Science, 321: 1197-1200.
  • 5. Chaloner, W. G., 1989. Fossil charcoal as an indicator of paleoat- mospheric oxygen level. Journal of Geological Society (London), 146: 171-174.
  • 6. Diessel, C.F.K., 2010. The stratigraphic distribution of inertinite. International Journal of Coal Geology, 81: 251-268.
  • 7. Glasspool, I. J. & Scott A. C., 2010. Phanerozoic atmospheric oxygen concentrations reconstructed from sedimentary charcoal. Nature Geoscience, 3: 627-630.
  • 8. Harris, T. M., 1958. Forest fire in the Mesozoic. Journal of Ecology, 46: 447-453.
  • 9. Jones, T. P., 1993. New morphological and chemical evidence for a wildfire origin for fusain from comparisons with modern charcoal. Special Papers in Palaeontology, 49: 113-123.
  • 10. Jones, T. P., 1994. 13C enriched Lower Carboniferous fossil plants from Donegal, Ireland: Constraints on taphonomy, diagenesis and palaeoenvironments. Review of Palaeobotany and Palynology, 81: 53-64.
  • 11. Jones, T. P., Ash, S. R. & Figueiral, I., 2002. Late Triassic charcoal from Petrified Forest National Park, Arizona, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 188: 127-139.
  • 12. Jones, T. P. & Lim, B., 2000. Extraterrestrial impacts and wild- fires: Palaeogeography, Palaeoclimatology, Palaeoecology, 64: 57-66.
  • 13. Keiluweit, M., Nico, P. S., Johnson, M. G. & Kleber, M., 2010. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environmental Science and Technology, 44:1247-1253.
  • 14. Konieczna, N., Belka, Z. & Dopieralska, J., 2014. Nd and Sr isotopic evidence for provenance of clastic material of the Upper Triassic rocks of Silesia, Poland. Annales Societatis Geologorum Poloniae, 85: 675-684.
  • 15. Marynowski, L. & Filipiak, P., 2007. Water column euxinia and wildfire evidence during deposition of the Upper Famennian Hangenberg event horizon from the Holy Cross Mountains (central Poland). GeologicalMagazine, 144: 569-595.
  • 16. Marynowski, L., Filipiak, P. & Zatoń, M., 2010. Geochemical and palynological study of the Upper Famennian Dasberg event horizon from the Holy Cross Mountains (central Poland). Geological Magazine, 147: 527-550.
  • 17. Marynowski, L., Kurkiewicz, S., Rakociński, M. & Simoneit, B. R. T., 2011b. Effects of weathering on organic matter: I. Changes in molecular composition of extractable organic compounds caused by paleoweathering of a Lower Carboniferous (Tournaisian) marine black shale. Chemical Geology, 285: 144-156.
  • 18. Marynowski, L., Scott, A. C., Zatoń, M., Parent, H. & Garrido, A. C., 2011a. First multi-proxy record of Jurassic wildfires from Gondwana: evidence from the Middle Jurassic of the Neuquén Basin, Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology, 299: 129-136.
  • 19. Marynowski, L. & Simoneit, B. R. T., 2009. Widespread Late Triassic to Early Jurassic wildfire records from Poland: Evidence from charcoal and pyrolytic polycyclic aromatic hydrocarbons. Palaios, 24: 785-798.
  • 20. Marynowski, L., Zatoń, M., Rakociński, M., Filipiak, P., Kurkiewicz, S. & Pearce, T. J., 2012. Deciphering the upper Famennian Hangenberg Black Shale depositional environments based on multi-proxy record. Palaeogeography, Pala- eoclimatology, Palaeoecology, 346-347: 66-86.
  • 21. O’Keefe, J. M. K., Bechtel, A., Christanis, K., Dai, S., DiMichele, W. A., Eble, C. F., Esterle, J. S., Mastalerz, M., Raymend, A. L., Valentim, B. V., Wagner, N. J., Ward, C. R. & Hower, J. C., 2013. On the fundamental difference between coal rank and coal type. International Journal of Coal Geology, 118: 58-87.
  • 22. Schweingruber, F. H., 2001. Dendroökologische Holzanatomie. Anatomische Grundlagen der Dendrochronologie. Birmens- dorf, von Eidgenössische Forschungsanstalt WSL, Haupt Verlag, Bern, Stuttgart, Wien, 472 pp.
  • 23. Scott, A. C., 2000. The Pre-Quaternary history of fire. Palaeogeography, Palaeoclimatology and Palaeoecology, 164: 281329.
  • 24. Scott, A. C., 2010. Charcoal recognition, taphonomy and uses in palaeoenvironmental analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 291: 11-39.
  • 25. Shen, W., Sun, Y., Lin, Y., Liu, D. & Chai, P., 2012. Evidence for wildfire in the Meishan section and implications for Permian-Triassic events. Geochimica et Cosmochimica Acta, 75: 1992-2006.
  • 26. Słowakiewicz, M., 2003. Fluid inclusion data in calcite from the Upper Triassic hot-spring travertines in southern Poland. Journal of Geochemical Exploration, 78-79: 123-126.
  • 27. Steinthorsdottir, M., Jeram, A. J. & McElwain, J. C., 2011. Extremely elevated CO2 concentrations at the Triassic/Jurassic boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 308: 418-432.
  • 28. Srodoń, J., Szulc, J., Anczkiewicz, A., Jewuła, K., Banaś, M. & Marynowski, L., 2014. Weathering, sedimentary, and diagenetic controls of mineral and geochemical characteristics of the vertebrate-bearing Silesian Keuper. Clay Minerals, 49: 569-594.
  • 29. Szulc, J., Gradziński, M., Lewandowska, A. & Heunisch, C., 2006. The Upper Triassic crenogenic limestones in Upper Silesia (southern Poland) and their paleoenvironmental context. In: Alonso-Zarza A. M. & Tanner L. H. (ed.), Paleoenvironmental record and applications of calcretes and palustrine carbonates. Geological Society of America Special Papers, 416: 133-151.
  • 30. Szulc, J., Racki, G. & Jewuła, K. 2015. Key aspects of the stratigraphy of the Upper Silesian middle Keuper, southern Poland. Annales Societatis Geologorum Poloniae, 85: 557-586.
  • 31. Szulc, J. & Racki, G., 2015. Grabowa Formation - the basic lithostratigraphic unit of Upper Silesian Keuper. Przegląd Geologiczny, 63: 103-113. [In Polish with, English summary.]
  • 32. Tanner, L. H., Lucas, S. G. & Zeigler, K. E., 2006. Rising oxygen levels in the Late Triassic: geological and evolutionary evidence. New Mexico Museum of Natural History and Science Bulletin, 37: 5-11.
  • 33. Uhl, D., Hartkopf-Fröder, C., Littke, R. & Kustatscher, E., 2014. Wildfires in the late Palaeozoic and Mesozoic of the Southern Alps - the Anisian and Ladinian (Mid Triassic) of the Dolomites (northern Italy). Palaeobiodiversity and Palaeoenvironments, 94: 271-278.
  • 34. Uhl, D., Jasper, A., Schindler, T. & Wuttke, M., 2010. Evidence of paleowildfire in the early Middle Triassic (early Anisian) Voltzia Sandstone: the oldest post-Permian macroscopic evidence of wildfire discovered so far. Palaios, 25: 837-842.
  • 35. Uhl, D., Jasper, A. & Schweigert, G., 2012a. Charcoal in the Late Jurassic (Kimmeridgian) of Western and Central Europe - palaeoclimatic and palaeoenvironmental significance. Palaeobiodiversity and Palaeoenvironments, 92: 329-341.
  • 36. Uhl, D., Jasper, A. & Schweigert, G., 2012b. Die fossile Holzgattung Agathoxylon Hartig im Nusplinger Plattenkalk (Ober- Kimmeridgium, Schwäbische Alb). Archaeopteryx, 30: 1622.
  • 37. Uhl, D. & Kerp, H., 2003. Wildfires in the Late Palaeozoic of Central Europe - The Zechstein (Upper Permian) of NW-Hesse (Germany). Palaeogeography, Palaeoclimatology, Palaeoecology, 199: 1-15.
  • 38. Uhl, D. & Montenari, M., 2011. Charcoal as evidence of palaeowildfires in the Late Triassic of SW Germany. Geological Journal, 46: 34-41.
  • 39. Wignall, P. B. & Newton, R., 1998. Pyrite framboid diameter as a measure of oxygen-deficiency in ancient mudrocks. American Journal of Science, 298: 537-552.
  • 40. Zeigler, K. E., Heckert, A. B. & Lucas, S. G., 2005. Taphonomic analysis of a fire-related Upper Triassic vertebrate fossil assemblage from North-Central New Mexico. Lucas, S. G, Zeigler, K. E., Lueth, V. W. & Owen, D. E. (eds), New Mexico Geological Society, Fall Field Conference Guidebook, Geology of the Chama Basin, 56: 341-354.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.