PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Electrochemical Properties of Flexible Anode with SnO2 Nanopowder for Sodium-Ion Batteries

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sodium-ion batteries (SiBs) have attracted substantial interest as an alternative to lithium-ion batteries because of the low cost. There have been many studies on the development of new anode materials that could react with sodium by conversion mechanism. SnO2 is a promising candidate due to its low cost and high theoretical capacity. However, SnO2 has the same problem as other anodes during the conversion reaction, i.e., the volume of the anode repeatedly expands and contracts by cycling. Herein, anode is composed of carbon nanofiber embedded with SnO2 nanopowder. The resultant electrode showed improvement of cyclability. The optimized SnO2 electrode showed high capacity of 1275 mAh g-1 at a current density of 50 mA g-1. The high conductivity of the optimized electrode resulted in superior electrochemical performance.
Twórcy
autor
  • Gyeongsang National University, Research Institute for Green Energy Convergence Technology, Jinju, 52828, Republic of Korea
  • Gyeongsang National University, Research Institute for Green Energy Convergence Technology, Jinju, 52828, Republic of Korea
  • Gyeongsang National University, Research Institute for Green Energy Convergence Technology, Jinju, 52828, Republic of Korea
autor
  • Gyeongsang National University, Department of Materials Engineering and Convergence Technology, Riget, Jinju, 52828, Republic of Korea
autor
  • Gyeongsang National University, Department of Materials Engineering and Convergence Technology, Riget, Jinju, 52828, Republic of Korea
autor
  • Gyeongsang National University, Department of Materials Engineering and Convergence Technology, Riget, Jinju, 52828, Republic of Korea
autor
  • Gyeongsang National University, Department of Materials Engineering and Convergence Technology, Riget, Jinju, 52828, Republic of Korea
  • Gyeongsang National University, Department of Materials Engineering and Convergence Technology, Riget, Jinju, 52828, Republic of Korea
autor
  • Gyeongsang National University, Research Institute for Green Energy Convergence Technology, Jinju, 52828, Republic of Korea
Bibliografia
  • [1] L. Yue, H. Zhao, Z. Wu, J. Liang, S. Lu, G. Chen, S. Gao, B. Zhong, X. Guo, X. Sun, J. Mater. Chem. A. 8 (23), 11493-11510 (2020).
  • [2] K. Mishra, N. Yadav, S. Hashmi, J. Mater. Chem. A. 8 (43), 22507-22543 (2020).
  • [3] M.K. Sadan, A.K. Haridas, H. Kim, C. Kim, G.-B. Cho, K.-K. Cho, J.-H. Ahn, H.-J. Ahn, Nanoscale Advances. 2 (11), 5166-5170 (2020).
  • [4] M.K. Sadan, H. Kim, C. Kim, S. Cha, K.-K. Cho, K.-W. Kim, J.-H. Ahn, H.-J. Ahn, J. Mater. Chem. A. 8 (19), 9843-9849 (2020).
  • [5] Z. Zhu, F. Cheng, Z. Hu, Z. Niu, J. Chen, J. Power Sources. 293, 626-634 (2015).
  • [6] H. Kim, M.K. Sadan, C. Kim, S.-H. Choe, K.-K. Cho, K.-W. Kim, J.-H. Ahn, H.-J. Ahn, J. Mater. Chem. A. 7 (27), 16239-16248 (2019).
  • [7] H. Kim, S.-W. Lee, K.-Y. Lee, J.-W. Park, H.-S. Ryu, K.-K. Cho, G.-B. Cho, K.-W. Kim, J.-H. Ahn, H.-J. Ahn, J. Nanosci. Nano-Technol. 18 (9), 6422-6426 (2018).
  • [8] H. Ye, L. Wang, S. Deng, X. Zeng, K. Nie, P.N. Duchesne, B. Wang, S. Liu, J. Zhou, F. Zhao, N. Han, P. Zhang, J. Zhong, X. Sun, Y. Li, Y. Li, J. Lu, Adv. Energy Mater. 7 (5), 1601602 (2016).
  • [9] C. Kim, I. Kim, H. Kim, M.K. Sadan, H. Yeo, G. Cho, J. Ahn, J. Ahn, H. Ahn, J. Mater. Chem. A. 6 (45), 22809-22818 (2018).
  • [10] M.K. Sadan, S.-H. Choi, H. Kim, C. Kim, G.-B. Cho, K.-W. Kim, N.S, Reddy, J.-H. Ahn, H.-J. Ahn, Ionics. 24, 753-761 (2018).
  • [11] D. Su, S. Dou, G. Wang, Nano Energy. 12, 88-95 (2015).
  • [12] D. Narsimulu, G. Nagaraju, S.C. Sekhar, B. Ramulu, J.S. Yu, Appl. Surf. Sci. 538, 148033 (2021).
  • [13] L. Wang, J. Wang, F. Guo, L. Ma, Y. Ren, T. Wu, P. Zuo, G. Yin, J. Wang, Nano Energy. 43, 184-191 (2018).
  • [14] S. Zhang, L. Yue, M. Wang, Y. Feng, Z. Li, J. Mi, Solid State Ion. 323, 105-111 (2018).
  • [15] X. Lu, F. Luo, Q. Xiong, H. Chi, H. Qin, Z. Ji, L. Tong, H. Pan, Mater. Res. Bull. 99, 45-51 (2018).
  • [16] Y.-N. Sun, M. Goktas, L. Zhao, P. Adelhelm, B.-H. Han, J. Colloid Interface Sci. 572, 122-132 (2020).
  • [17] A.K. Haridas, J. Heo, X. Li, H.-J. Ahn, X. Zhao, Z. Deng, M. Ago-Stini, A. Matic, J.-H. Ahn, Chem. Eng. J. 385, 123453 (2020).
  • [18] M. K.Sadan, H. Kim, C. Kim, G.-B. Cho, N.S. Reddy, K.-K. Cho, T.-H. Nam, K.-W. Kim, J.-H. Ahn, H.-J. Ahn, J. Nanosci. Nano-Technol. 20 (11), 7119-7123 (2020).
  • [19] S. Men, H. Zheng, D. Ma, X. Huang, X. Kang, J. Energy Chem. 54, 124-130 (2021).
  • [20] H. Xie, Z. Wu, Z. Wang, N. Qin, Y. Li, Y. Cao, Z. Lu, J. Mater. Chem. A. 8 (7), 3606-3612 (2020).
  • [21] G. Cha, S. Mohajernia, N.T. Nguyen, A. Mazare, N. Denisov, I. Hwang, P. Schmuki, Adv. Energy Mater. 10 (6), 1903448 (2020).
  • [22] Y.C. Lu, C. Ma, J. Alvarado, T. Kidera, N. Dimov, Y.S. Meng, S. Okada, J. Power Sources. 204, 287-295 (2015).
  • [23] A.-T. Chien, S. Cho, Y. Joshi, S. Kumar, Polymer. 55 (26), 6896-6905 (2014).
Uwagi
1. This work was supported by the project (2020R1A6A3A01100036, 2020R1A2C1101863, 2019H1d8A2105994) through the National Research Foundation of Korea (NRF).
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ce027c93-7cd3-4607-aef2-4e7c723b7b21
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.