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Abstract: In this paper, symbolic computation techniques are
used to obtain a canonical form for polynomial matrices arising from
linear delay-differential systems of the neutral type. The canonical
form can be regarded as an extension of the companion form, often
encountered in the theory of linear systems, described by ordinary
differential equations. Using the Smith normal form, the exact con-
nection between the original polynomial matrix and the reduced
canonical form is set out. An example is given to illustrate the com-
putational aspects involved.
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1. Introduction

Canonical forms play an important role in the modern theory of linear systems.
In particular, the so-called companion matrix has been used by many authors in
the analysis and synthesis of 1-D linear control systems. For instance, Barnett
(1976) showed that many of the concepts encountered in 1-D linear systems
theory such as controllability, observability, stability and pole assignment, can
be nicely linked via the companion matrix. Boudellioua (2007) suggested a
matrix form, which can be regarded as a generalization of the companion form
for a class of bivariate polynomials. These polynomials arise in the study of
linear neutral delay-differential systems, as suggested by Byrnes, Spong and
Tarn (1984). However, in that paper, the author did not establish the exact
connection between the original matrix and the reduced canonical form. In this
paper, using symbolic computation based on the OreModules, Maple package
(see Chyzak, Quadrat and Robertz, 2007) the connection between the original
polynomial matrix and the canonical form is established.

∗Submitted: February 2015; Accepted: September 2015



358 M.S. Boudellioua

2. Polynomial matrices arising from linear neutral delay-

differential systems

Consider the following linear system of delay-differential equations as given in
Byrnes, Spong and Tarn (1984):

p
∑

i=0

Eiẋ(t− ih) =

p
∑

i=0

Aix(t− ih) +

q
∑

j=0

Bju(t− jh) (1)

where x(t) ∈ Rn is the vector of state variables, u(t) ∈ Rl is the vector of
controlled variables, Ai, Bj , Ck, Dq are real constant matrices of appropriate
dimensions and h ∈ R+ is a constant. The system (1) can be written in the
polynomial form:

[sE(z)−A(z)]x(t) = B(z)u(t) (2)

where E(z), A(z), B(z) are, respectively, n× n, n× n, n× l over R[z], s = d/dt
denotes a differential operator and z is a backward shift operator, i.e., zx(t) =
x(t− h). The polynomial matrix over R[s, z],

T (s, z) = sE(z)−A(z) (3)

is the characteristic matrix associated with (1). The system (1) is called a neu-
tral system because, it contains delays in the derivatives of the states or inputs.
Neutral delay-differential equations of the type (1) have many applications and
may arise, for example, in the study of lumped parameter networks intercon-
nected by transmission lines (see Byrnes, Spong and Tarn, 1984). It is assumed
in equations (2) that E(z) is atomic at zero i.e. det(E(0)) 6= 0. This is necessary,
in general, to guarantee causality.

Throughout this paper, unless specified otherwise, D = K[x1, . . . , xn] de-
notes the polynomial ring in the indeterminates x1, . . . , xn with coefficients in
an arbitrary, but fixed, field K. First, we present a few definitions that will be
needed later in the paper.

3. Definitions

Definition 1 Let D = K[x1, . . . , xn]. The general linear group GLp(D) is
defined by

GLp(D) =
{

M ∈ Dp×p | ∃N ∈ Dp×p : MN = NM = Ip
}

.

An element M ∈ GLp(D) is called a unimodular matrix. It follows that M is
unimodular if and only if the determinant of M is invertible in D, i.e., is a
non-zero element of K.

One of standard tasks, which is performed in systems theory, is to transform a
given system representation into a simpler form before applying any analytical
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or numerical method. The transformation involved must, of course, preserve
the relevant system properties, if conclusions about the reduced system are to
remain valid with respect to the original one. An equivalence transformation
used in the context of multidimensional systems is unimodular equivalence. This
transformation can be regarded as an extension of Rosenbrock’s equivalence
(Rosenbrock, 1970) from the univariate to the multivariate setting and is defined
by the following:

Definition 2 Let T1 and T2 denote two q × p matrices with elements in D:
then T1 and T2 are said to be unimodular-equivalent if there exist two matrices
M ∈ GLq(D) and N ∈ GLp(D) such that

T2 = MT1N. (4)

4. Equivalence to Smith form over D = K[x1, . . . , xn
]

The Smith form S of a p× q matrix T with elements in a domain D is usually
the result of an equivalence transformation, i.e. a transformation of the form

S = MTN. (5)

where M and N are unimodular matrices with elements in D, i.e., square with
determinant being a unit of D. The resulting Smith form S is given by

[

Γ 0
]

; (p < q)
Γ ; (p = q)

[

Γ
0

]

; (p > q)
(6)

where Γ is a t× t diagonal matrix given by

Γ = diag(Φ1,Φ2, . . . ,Φr, 0, 0, . . . , 0), (7)

t = min(p, q), r =rank of T ; the invariant polynomials Φi in (7) are given by

Φi = di/di−1, i = 1, 2, . . . , r, (8)

d0 = 1 and di is the greatest common divisor of the ith order minors of T . In
order to show that any matrix can be brought by an equivalence transformation
to its Smith form, it is usually required that D be a principal ideal domain
or a Euclidean domain. The problem of equivalence of a multivariate polyno-
mial matrix to its Smith form was first studied by Frost and Storey (1979) who
proposed only necessary conditions. Later on, Frost and Boudellioua (1986)
presented the necessary and sufficient conditions for a class of bivariate poly-
nomial matrices. Lee and Zak (1983) also gave some necessary and sufficient
conditions in terms of solutions of some polynomial equations. However these
conditions are difficult to test. Lin, Boudellioua and Xu (2006) extended result
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from Frost and Boudellioua (1986) to the multivariate case and Boudellioua and
Quadrat (2010) generalized them to a larger class of matrices using a module
theoretic approach. The establishment of the equivalence to the Smith form
is based on the application of the well known Quillen-Suslin Theorem. For an
implementation of Quillen-Suslin Theorem with Maple and applications to mul-
tidimensional systems theory, the reader is referred to the paper by Fabianska
and Quadrat (2007).

Theorem 1 (Quillen, 1976; Suslin, 1976) Let K be a principal ideal domain
and D = K [x1, . . . , xn] and let R ∈ Dq×p be a matrix which admits a right-
inverse R̃ ∈ Dp×q, i.e., RR̃ = Iq. Then there exists a unimodular matrix
N ∈ GLp(D) such that

RN =
(

Iq 0
)

. (9)

Now we state the necessary and sufficient conditions for the reduction of a class
of polynomial matrices to the Smith form.

Theorem 2 (Frost and Boudellioua, 1986; Lin, Boudellioua and Xu, 2006;
Boudellioua and Quadrat, 2010) Let K be a principal ideal domain and D =
K [x1, . . . , xn] and let T ∈ Dp×p, with full row rank, then T is unimodular-
equivalent to the Smith form

S =

(

Ip−1 0
0 det(T )

)

(10)

if and only if there exists a vector U ∈ Dp which admits a left inverse over D
such that the matrix

(

T U
)

has a right inverse over D.

The problem of finding a vector U ∈ D, when it exists, such that the
condition in Theorem 2 is satisfied is neither trivial nor random. On simple
examples over a commutative polynomial ring D = K[x1, . . . , xn] with coef-
ficients in a computable field K (e.g., K = Q), one may take a generic vec-
tor U ∈ Dq with a fixed total degree in the xi’s and compute the D-module
ext1D(E,D) = D1×q/

(

D1×(p+1) (T U)T
)

by means of a Gröbner basis compu-
tation and check whether or not the D-module ext1D(E,D) vanishes on certain
branches of the corresponding tree of integrability conditions, see Pommaret and
Quadrat (2000) or on certain obstructions to genericity (i.e., constructible sets
of the K-parameters of U), see Levandovskyy and Zerz (2007) for a survey,
explaining these techniques and their implementations in Singular.

5. Canonical form for linear neutral delay-differential sys-

tems

Now, let D = R[s, z] and suppose now there exists a vector U ∈ Dn+m such
that the condition in Theorem 2 is satisfied. Then it follows that the matrix
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T ∈ Dp×p is equivalent over D to the Smith form

S =

(

Ip−1 0
0 det(T )

)

(11)

where
det(T ) = |sE(z)−A(z)|

is the 2-D characteristic polynomial of the matrix pair (A(z), E(z)).
Introducing the canonical form given in Boudellioua (2007) for a matrix T

in the form (3) and letting

det(T ) ≡ det(sE(z)−A(z)) =
n
∑

i=0

ei(z)s
n−i, (e0(z) monic) (12)

We are considering now the matrix TF ∈ Dn×n in the canonical form:

TF = sĒ(z)− F (z) (13)

where Ē(z) is given by

Ē(z) =

(

In−1 0
0 e0(z)

)

(14)

and F (z) is the companion matrix associated with the polynomial

k(s, z) = det(T ) + sn − e0(z)s
n,

i.e.,

F (z) =















0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−en(z) −en−1(z) −en−2(z) · · · −e1(z)















. (15)

The matrix TF = sĒ(z)− F (z) takes the form:

TF =















s −1 0 · · · 0
0 s −1 · · · 0
...

...
...

. . .
...

0 0 0 · · · −1
en(z) en−1(z) en−2(z) · · · se0(z) + e1(z)















. (16)

It can be easily verified that det(T ) = det(sĒ(z)− F (z).
It should be noted here that the unimodular equivalence of a system de-

scribed by the polynomial matrix T in (3), satisfying the condition in Theorem
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2 means that it can be reduced to an equivalent presentation, involving only
one single equation in one unknown function. Furthermore, the class of neutral
delay-differential systems in (1), amenable to be reduced to the canonical form
described above are those which are strongly controllable as studied by Zerz
(2000), page 75.

Lemma 1 The matrix in the canonical form TF in (16) is unimodular-equivalent
to the Smith form (11).

Proof. Consider the matrix TF in the canonical form (16), the vector U = En,
where En is the n-th column of the identity matrix In and let m2,3,...,n

1,2,...n be the
highest order minor formed from the rows 1, 2, . . . n, and columns 2, 3, . . . , n+1
of the matrix (TF En), i.e.,

m2,3,...,n+1
1,2,...n =

∣

∣

∣

∣

∣

∣

∣

∣

∣

−1 0 · · · 0
∗ −1 · · · 0
...

...
. . .

...
∗ ∗ · · · 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (17)

Clearly, the matrix (TF U) ≡ (TF En) has a right inverse over D, since it
has a highest order minor m2,3,...,n+1

1,2,...n , which is lower triangular with all diagonal

elements equal to ±1, i.e. m2,3,...,n+1
1,2,...n = (−1)n−1. Therefore, by Theorem 2, the

matrix TF is unimodular-equivalent to the Smith form (11):

S =

(

In−1 0
0 det(TF )

)

. (18)

The following result, based on the Smith form, establishes the connection
between a polynomial matrix T in the form (3) and its equivalent canonical
form TF in (16).

Theorem 3 Let T be a polynomial matrix in the form (3) satisfying the condi-
tion given in Theorem 2, then T is unimodular-equivalent over D to the canon-
ical form TF in (16). Furthermore

TF = M−1
2 M1TN1N

−1
2 (19)

where the Smith form S = M1TN1 = M2TFN2.

Proof. By Theorem 2, T is equivalent to the Smith form S1, where S1(n, n) =
det(T ) and by Lemma 1, TF is equivalent to the Smith form S2, with S2(n, n) =
det(TF ). Since det(T ) = det(TF ), it follows that T and TF are equivalent to
the same Smith form , i.e. S1 = S2, i.e. there exist matrices M1, N1,M2, N2 ∈
GLn(D) such that S = M1TN1 = M2TFN2. By transitivity of the unimodular
equivalence, T and TF are also equivalent with

TF = M−1
2 M1TN1N

−1
2 .
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6. Illustrative example

Let D = R[s, z] and

T =





t11 t12 t13
t21 t22 t23
t31 t32 t33



 (20)

with

t11 = (−2 z3 + z2 + 2 z)s− z3 + 2 z − 1
t12 = (2 z3 − z2 + 2 z − 1)s− 3 z3 + z2 + 6 z − 2
t13 = (2 z4 − 5 z3 + 2 z2 + 3 z)s+ z4 − 2 z3 − 5 z2 + 2 z − 1
t21 = (2 z3 − z2 − 2 z + 1)s+ z3 − z
t22 = (−2 z3 + z2 − 2 z + 1)s+ 3 z3 − z2 − 6 z + 1
t23 = (−2 z4 + 5 z3 − 2 z2 − 4 z + 2)s− z4 + 2 z3 + 4 z2 + z − 1
t31 = (−2 z2 + z + 1)s− z2 + 1
t32 = (2 z2 − z + 2)s− 3 z2 + z + 5
t33 = (2 z3 − 5 z2 + 3 z + 1)s+ z3 − 2 z2 − 4 z − 1

where
det(T ) = (2 z − 1) s3 + (−z − 2) s2 + (z + 2) s+ z − 1.

Using the equations in (14) and (15), the matrix in canonical form TF , associated
with the polynomial det(T ), is obtained as:

TF ≡ sĒ(z)− F (z) =









s −1 0

0 s −1

z − 1 z + 2 (2 z − 1) s− z − 2









. (21)

First, we reduce the matrix T to the Smith form S, i.e., compute M1 ∈ GL3(D)
and N1 ∈ GL3(D) such that S = M1TN1 where S is given by (11).

Using the method given by Boudellioua and Quadrat (2010), consider the
vector

U1 =
(

z −z 1
)T

∈ D3

and P1 = (T U1) ∈ D3×4. Using the package OreModules in Maple, see
Chyzak, Quadrat and Robertz (2007), we can check that P1 admits a right
inverse over D and we can compute a minimal parametrization Qm ∈ D4 of P1,
where Qm = (QT

1 QT
2 )

T and P1Qm = 0,

Qm=

(

Q1

Q2

)

=















(−z + 2) s2 +
(

z2 − 3 z + 2
)

s+ z3 − 4 z2 + 5 z − 3

−s− z + 1

−s2 + (z − 1) s+ z2 − 2 z + 1

(2 z − 1) s3 + (−z − 2) s2 + (z + 2) s+ z − 1















. (22)
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Computing the SyzygyModule K1 ∈ D2×3 of Q1, i.e., K1Q1 = 0 gives

K1 =

(

−s− z + 1 1 (z − 2) s+ z2 − 3 z + 2

−z2 + 2 z − 1 −s+ 2 z − 2 z3 − 4 z2 + 5 z − 1

)

(23)

where the matrix Q3 ∈ D3×2 is the right inverse of K1, i.e.,

Q3 =









(z − 2) s− 2 z2 + 6 z − 4 z − 2

1 0

s− 2 z + 2 1









(24)

Thus, the matrix N1 = (Q3 Q1) ∈ GL3(D) is given by:

N1 =





n11 n12 n13

n21 n22 n23

n31 n32 n33



 (25)

where

n11 = (z − 2)s− 2z2 + 6z − 4
n12 = z − 2
n13 = (−z + 2)s2 + (z2 − 3z + 2)s+ z3 − 4z2 + 5z − 3
n21 = 1
n22 = 0
n23 = −s− z + 1
n31 = s− 2z + 2
n32 = 1
n33 = −s2 + (z − 1)s+ z2 − 2z + 1.

The matrix M1 = (TQ3 − U)−1 ∈ GL3(D) is given by:

M1 =





m11 m12 m13

m21 m22 m23

m31 m32 m33



 (26)

where

m11 = −1
m12 = −1
m13 = 0
m21 = −z + 1
m22 = −z
m23 = −z
m31 = (−2 z + 1)s2 + (z + 2)s− z − 2
m32 = (−2 z + 1)s2 + (−z + 3)s+ 2 z + 1
m33 = (−2 z2 + z)s+ 3 z2 + 3 z − 1
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and it can be easily verified that the matrix M1TN1 yields the Smith form

S=

(

I2 0
0 Q2

)

≡









1 0 0

0 1 0

0 0 (2 z − 1) s3 + (−z − 2) s2 + (z + 2) s+ z − 1









(27)

where Q2 = det(T ). Similarly, the matrix TF is reduced to the Smith form
S, i.e., computing M2 ∈ GL3(D) and N2 ∈ GL3(D) such that S = M2TFN2,

where S is given by (11). Now, consider the vector U2 =
(

0 0 1
)T

∈ D3

and P2 = (TF U2) ∈ D3×4. Using the package OreModules in Maple, we
can check that P2 admits a right inverse over D and we can compute a minimal
parametrization Q̄m ∈ D4 of P2, where Q̄m = (Q̄T

1 Q̄T
2 )

T and P2Q̄m = 0,

Q̄m ≡

(

Q̄1

Q̄2

)

=















−1

−s

−s2

(2 z − 1) s3 + (−z − 2) s2 + (z + 2) s+ z − 1















. (28)

Computing the SyzygyModule K2 ∈ D2×3 of Q̄1, i.e., K2Q̄1 = 0 gives

K2 =

(

s −1 0

0 s −1

)

(29)

where the matrix Q̄3 ∈ D3×2 is the right inverse of K2, i.e.,

Q̄3 =









0 0

−1 0

−s −1









. (30)

Thus, the matrix N2 =
(

Q̄3 Q̄1

)

∈ GL3(D) is given by:

N2 =









0 0 −1

−1 0 −s

−s −1 −s2









(31)

The matrix M2 = (T Q̄3 − U2)
−1 ∈ GL3(D) is given by:

M2 =









1 0 0

0 1 0

(−2 z + 1) s2 + (z + 2) s− z − 2 (−2 z + 1) s+ z + 2 −1









(32)
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and it can be easily verified the matrix M2TFN2 yields the Smith form

S=

(

I2 0
0 Q̄2

)

≡









1 0 0

0 1 0

0 0 (2 z − 1) s3 + (−z − 2) s2 + (z + 2) s+ z − 1









(33)

where Q̄2 = det(TF ) = det(T ). It follows that the matrix TF is related to the
matrix T by the following transformation:

TF = MTN (34)

where
M = M−1

2 M1 ≡
(

m1 m2 m3

)

∈ GL3(D),
N = N1N

−1
2 ≡

(

n1 n2 n3

)

∈ GL3(D)

and

m1=









−1

−z + 1

(4z− 2) s2 +(−2z − 4 + (−2z + 1) (−z + 1)) s+ 2z + 4 + (z + 2)(−z + 1)









,

(35)

m2 =









−1

−z

(4 z − 2) s2 + (−5− (−2 z + 1) z) s− z + 1− (z + 2) z









, (36)

m3 =









0

−z
(

− (−2 z + 1) z + 2 z2 − z
)

s+ 1− (z + 2) z − 3 z2 − 3 z









, (37)

n1=









(

(z−2) s−2z2+6z − 4
)

s+3−(−z+2) s2−
(

z2−3z + 2
)

s− z3 + 4z2 − 5z

2 s+ z − 1

(s− 2 z + 2) s− 1 + s2−(z − 1) s− z2 + 2 z









,

(38)

n2 =









2 z2 − 6 z + 4

−1

2 z − 2









, (39)

and

n3 =









−z + 2

0

−1









. (40)
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7. Conclusions

In this paper, the Smith normal form of a bivariate polynomial matrix, to-
gether with symbolic computation techniques, are used effectively to compute
the equivalence transformations that reduce a class of bivariate polynomial ma-
trices to a canonical form. The classes of matrices considered are those amenable
to be reduced by unimodular equivalence to a single equation in one unknown
function. These matrices arise from neutral delay-differential systems, which
are strongly controllable. Furthermore the results given in the paper can be
extended to delay-differential systems with non-commensurate delays.
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