PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Spectral Signatures of Conifer Needles Mainly Depend on Their Physical Traits

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study was to determine the traits that define the optical properties of the needles of four coniferous species: Picea abies, Picea omorika, Abies alba and Pinus sylvestris. The analysis included measurements of the needles for their morphological and anatomical aspects, reflectances at the upper and lower needle surfaces through their 280–880-nm spectra, and biochemical traits. The needles of these species differed significantly in the majority of morphological and anatomical traits, with the most pronounced differences seen for the thickness of the cuticle and epidermis, the needle width and thickness, the width of the central cylinder, and the position and density of the stomata. The reflectance spectra of the upper needle surface were very similar, while for the reflectance of the lower needle surface, P. omorika reflected light the most efficiently, followed by A. alba. The biochemical properties indicated significant differences in the amounts of UV-absorbing compounds, which were highest in P. sylvestris, and relatively low in A. alba and P. abies. The upper needle surface reflectance spectra were significantly affected by thickness of the cuticle, by pore width and by total mesophyll thickness, which explained 24%, 12% and 4% of the variability, respectively. The needle traits that explained the reflectance spectra variability of the lower needle surface were the hypoderm (28%), needle thickness (4%), density of stomata (28%), length of the outer pores (9%), and amount of UV-A-absorbing compounds (7%). Our data show that the needle reflectance spectra are primarily affected by the physical structure of the needles, and little by the needle biochemistry. This calls into question the methodologies for determination of the biochemical status of conifers based on their reflectance spectra.
Rocznik
Strony
1--13
Opis fizyczny
Bibliogr. 64 poz., rys., tab., wykr.
Twórcy
  • Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
autor
  • Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
autor
  • Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
  • Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
Bibliografia
  • [1] Asner G. P. 1998 — Biophysical and biochemical sources of variability in canopy reflectance — Remote Sens. Environ. 64: 234–253.
  • [2] Asner G. P. , Martin R. E. 2008 — Spectral and chemical analysis of tropical forests: scaling from leaf to canopy levels — Remote Sens. Environ. 112: 3958–3970.
  • [3] Baltzer J. L. , Thomas S. C. 2005 — Leaf optical responses to light and soil nutrient availability in temperate deciduous trees — Am. J. Bot. 92: 241–223.
  • [4] Boeger M. R. T. , Poulson M. E. 2003 — Morphological adaptations and photosynthetic rates of amphibious Veronica anagallis-aquatica L. (Schropulariaceae) under different flow regimes — Aquat. Bot. 75: 123–135.
  • [5] Caldwell M. M. , 1968 — Solar ultraviolet radiation as an ecological factor for alpine plants — Ecol. Monogr. 38: 243–268.
  • [6] Caldwell M. M. , Björn L. O. , Bornman J. F. , Flint S. D. , Kulandaivelu G. , Teramura A. H. , Tevini M. 1998 — Effects of increased solar ultraviolet radiation on terrestrial ecosystems — J. Photochem. Photobiol. B: Biology 46: 40–52.
  • [7] Carter G. A. , Spiering B. A. 2002 — Optical properties of intact leaves for estimating chlorophyll concentration — J. Environ. Qual. 31: 1424–1432.
  • [8] Castro-Esau K. L. , Sánchez-Azofeifa G. A. , Rivard B. , Wright S. J. , Quesada M. 2006 — Variability in leaf optical properties of mesoamerican trees and the potential for species classification — Am. J. Bot. 93: 517–530.
  • [9] Castro K. L. , Sanchez-Azofeifa G. A. 2008 — Changes in spectral properties, chlorophyll content and internal mesophyll structure of senescing Populus balsamifera and Populus tremuloides leaves — Sensors, 8: 51–69.
  • [10] Chandrasekharan R. 2005 — Optical properties of leaves — PHY 598 OS Final Report.
  • [11] Clark J. B. , Lister G. R. 1975 — Photosynthetic action spectra of trees I. Comparative photosynthetic action spectra of one deciduous and four coniferous tree species as related to photorespiration and pigment complements — Plant Physiol. 55: 401– 406.
  • [12] Coops N. C. , Stone C. 2005 — A comparison of field-based and modelled reflectance spectra from damaged Pinus radiata foliage — Aust. J. Bot. 53: 417–429.
  • [13] Croxdale J. L. 2000 — Stomatal patterning in angiosperms — Am. J. Bot. 87: 1069–1080.
  • [14] Day T. A. , Vogelmann T. C. , DeLucia E. H. 1992 — Are some plant life forms more effective than others in screening out ultraviolet-B radiation? — Oecologia, 92: 513–519.
  • [15] Dim J. R. , Kajiwara K. , Honda Y. 2008 — Radiometric signature and spatial variability of the vegetation coverage of a boreal forest — Int. J. Remote Sens. 29: 6851–6871.
  • [16] Drumm H. , Mohr H. 1978 — The mode of interaction between blue (UV) light photoreceptor and phytocrome in anthocyanin formation of the Sorghum seedling — J. Photochem. Photobiol. B 27: 241–248.
  • [17] Fischbach R. J. , Kossmann B. , Panten H. Steinbrecher R. , Heller W. , Seidlitz H. K. , Sandermann H. , Hertkorn N. , Schnitzler J.-P. 1999 — Seasonal accumulation of ultraviolet-B screening pigments in needles of Norway spruce [Picea abies (L.) Karst.] — Plant, Cell Environ. 22: 27–37.
  • [18] Gates D. M. , Keegan H. J. , Schleter J. C. , Wiedner V. R. 1965 — Spectral properties of plants — Appl. Opt. 4: 11–20.
  • [19] Gitelson A. A. , Zur Y. , Chivkunova O. B. , Merzlyak M. N. 2002 — Assessing carotenoid content in plant leaves with reflectance spectroscopy — Photochem. Photobiol. 75: 272–281.
  • [20] Grossnickle S. C. 2000 — Ecophysiology of northern spruce species: The performance of planted seedlings — NRC Research Press, Ontario, 66–69 pp.
  • [21] Gurevitch J. , Scheiner S. M. , Fox G. L. 2002 — The ecology of plants —Sinauer Associates, Sunderland.
  • [22] Holmes M. G. , Keiller D. R. 2002 — Effects of pubescence and waxes on the reflectance of leaves in the ultraviolet and photosynthetic wavebands: a comparison of a range of species — Plant, Cell Environ. 25: 85–93.
  • [23] Hoque E. , Remus G. 1999 — Natural UV-screening mechanisms of Norway spruce (Picea abies [L.] Karst.) needles — Photochem. Photobiol. 69: 177–192.
  • [24] Klančnik K. , Mlinar M. , Gaberščik A. 2012 — Heterophylly results in a variety of “spectral signatures” in aquatic plant species — Aquat. Bot. 98: 20–26.
  • [25] Klančnik K. , Vogel-Mikuš K. , Gaberščik A. 2014 — Silicified structures affect leaf optical properties in grasses and sedge — J. Photochem. Photobiol. B 130: 1–10.
  • [26] Knapp A. K. , Carter G. A. 1998 — Variability in leaf optical properties among 26 species from a broad range of habitats — Am. J. Bot. 85: 940–946.
  • [27] Kováč D. , Malenovský Z. , Urban O. , Špunda V. , Kalina J. , Ač A. , Kaplan V. , Hanuš J. 2013 — Response of green reflectance continuum removal index to the xanthophyll de-epoxidation cycle in Norway spruce needles — J. Exp. Bot. 64: 1817–2187.
  • [28] Krauss P. , Markstädter C. , Riederer M. 1997 — Attenuation of UV radiation by plant cuticles from woody species — Plant, Cell Environ. 20: 1079–1085.
  • [29] Larcher W. 2003 — Physiological Plant Ecology — Springer, Berlin.
  • [30] Lee D. W. , Collins T. M. , 2001 — Phylogenetic and ontogenetic influences on the distribution of anthocyanins and betacyanins in leaves of tropical plants — Int. J. Plant Sci. 162: 1141– 1153.
  • [31] Levizou E. , Drilias P. , Psaras G. K. , Manetas Y. 2005 — Nondestructive assessment of leaf chemistry and physiology through spectral reflectance measurements may be misleading when changes in trichome density co-occur — New Phytol. 165: 463–472.
  • [32] Liakopoulos G. , Nikolopoulos D. , Klouvatou A. , Vekkos K.-A. , Manetas Y. , Karabourniotis G. 2006 — The photoprotective role of epidermal anthocyanins and surface pubescence in young leaves of grapevine (Vitis vinifera) — Ann. Bot. 98: 257–265.
  • [33] Lichtenthaler H. K. , Buschmann C. 2001a — Extraction of photosynthetic tissues: chlorophylls and carotenoids. Current Protocols in Food Analytical Chemistry — John Wiley & Sons , Inc., New York, F.4.2.1–4.2.6 pp.
  • [34] Lichtenthaler H. K. , Buschmann C. 2001b — Chlorophylls and carotenoids: measurement and characterisation by UV-VIS. Current Protocols in Food Analytical Chemistry — John Wiley & Sons , Inc., New York, F4.3.1–F4.3.8 pp.
  • [35] Lukeš P. , Stenberg P. , Rautiainen M. , Mottus M. , Vanhatalo K. M. 2013 — Optical properties of leaves and needles for boreal tree species in Europe — Remote Sens. Lett. 4: 667–676.
  • [36] Manetas Y. , Drinia A. , Petropoulou Y. , 2002 — High contents of anthocyanins in young leaves are correlated with low pools of xanthophyll cycle components and low risk of photoinhibition — Photosynthetica, 40: 349–354.
  • [37] Merzlyak M. N. , Chivkunova O. B. 2000 — Light-stress-induced pigment changes and evidence for anthocyanin photoprotection in apples — J. Photochem. Photobiol. B 55: 155–163.
  • [38] Milton E. J. , Schaepman M. E. , Anderson K. , Kneubühler M. , Fox N. 2009 — Progress in field spectroscopy — Remote Sens. Environ. 113: 92–109.
  • [39] Moorthy I. , Miller J. R. , Noland T. L. 2008 — Estimating chlorophyll concentration in conifer needles with hyperspectral data: an assessment at the needle and canopy level — Remote Sens. Environ. 112: 2824–2838.
  • [40] Mõttus M. , Sulev M. , Hallik L. 2014 — Seasonal course of the spectral properties of alder and birch leaves — IEEE Journal of Sel. Top. Appl. 7: 2496–2505.
  • [41] Nayak L. , Biswal B. , Ramaswamy N. K. , Iyer R. K. , Nair J. S. , Biswal U. C. 2003 — Ultraviolet-A induced changes in photosystem II of tylakoids: effects of senescence and high growth temperature — J. Photoch. Photob. B 70: 59–65.
  • [42] Neill S. O. , Gould K. S. 1999 — Optical properties of leaves in relation to anthocyanin concentration and distribution — Can. J. Bot. 77: 1777– 1782.
  • [43] Noda H. M. , Motohka T. , Murakami K. , Muraoka H. , Nasahara K. N. 2013 — Accurate measurement of optical properties of narrow leaves and conifer needles with a typical integrating sphere and spectroradiometer — Plant, Cell Environ. 36: 1903–1909.
  • [44] Noda H. M. , Motohka T. , Murakami K. , Muraoka H. , Nasahara K. N. 2014 — Reflectance and transmittance spectra of leaves and shoots of 22 vascular plant species and reflectance spectra of trunks and branches of 12 tree species in Japan — Ecol. Res. 29: 111.
  • [45] Olascoaga B. , Juurola E. , Pinho P. , Lukeš P. , Halonen L. , Nikinmaa E. , Bäck J. , Porcar-Castell A. 2014 — Seasonal variation in the reflectance of photosynthetically active radiation from epicuticular waxes of Scots pine (Pinus sylvestris) needles — Boreal Environ. Res. 19: 132 (Supplement B).
  • [46] Osborne B. A. , Raven J. A. 1986 — Light absorption by plants and its implication for photosynthesis — Biol. Rev. 61: 1–60.
  • [47] Pfündel E. E. 2003 — Action of UV and visible radiation on chlorophyll fluorescence from dark-adapted grape leaves (Vitis vinifera L.) — Photosynth. Res. 75: 29–39.
  • [48] Robakowski P. , Samardakiewicz S. , Kierzkowski D. 2004 — Variation in structure of needles of silver fir (Abies alba Mill.) saplings growing under the canopies of diverse tree species — Pol. J. Ecol. 52: 563–568.
  • [49] Robe W. E. , Griffiths H. 2000 — Physiological and photosynthetic plasticity in the amphibious, freshwater plant, Litorella uniflora, during the transition from aquatic to dry terrestrial environments — Plant, Cell Environ. 23: 23–35.
  • [50] Roelofsen H. D. , van Bodegom P. M. , Kooistra L. , Witte J.-P. M. 2014 — Predicting leaf traits of herbaceous species from their spectral characteristics — Ecol. Evol. 4: 706–719.
  • [51] Rozema J. , Björn L. O. , Bornman J. F. , Gaberščik A. , Häder D. P. , Trošt T. , Germ M. , Klisch M. , Groniger A. , Sinha R. P. , Lebert M. , He Y. Y. , Buffoni-Hall R. , de Bakker N. V. , van de Staaij J. , Meijkamp B. B. 2002 — The role of UV-B radiation in aquatic and terrestrial ecosystems — an experimental and functional analysis of the evolution of UV-absorbing compounds — J. Photoch. Photobiol. B 66: 2–12.
  • [52] Schnitzler J.-P. , Jungblut T. P. , Heller W. , Kofferlein M. , Hutzler P. , Heinzmann U. , Schmelzer E. , Ernst D. , Langebartels C. , Sandermann H. 1996 — Tissue localization of UV-B screening pigments and of chalcone synthase mRNA in needles of Scots pine seedlings — New Phytol. 132: 247–258.
  • [53] Serbin S. P. , Singh A. , McNeil B. E. , Kingdon C. C. , Townsend P. A. 2014 — Spectroscopic determination of leaf morphological and biochemical traits for northern temperate and boreal tree species — Ecol. Appl. 24: 1651–1669.
  • [54] Sims D. A. , Gamon J. A. 2002 — Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages — Remote Sens. Environ. 81: 337–354.
  • [55] Strack D. , Wray V. 1989 — Anthocyanins (In: Methods in Plant Biochemistry, Vol. I, Plant Phenolics, Eds: P. M. Day , J. B. Harborne ) — Academic Press, San Diego, 325–356 pp.
  • [56] Schreiber L. 1994 — Comparative investigations of cuticular permeability of conifer needles from healthy and damaged trees — New Phytol. 128: 251–261.
  • [57] Slaton M. R. , Hunt E. R. , Smith W. K. 2001 — Estimating near-infrared leaf reflectance from leaf structural characteristics — Am. J. Bot. 88: 278–284.
  • [58] Šraj-Kržič, N. , Gaberščik, A. 2005 — Photochemical efficiency of amphibious plants in an intermittent lake — Aquat. Bot. 83: 281–288.
  • [59] ter Braak C. J. F. , Šmilauer P. 2002 — CANOCO Reference Manual and CanoDraw for Windows User's Guide Software for Canonical Community Ordination (version 4.5) — Microcomputer Power, Ithaca.
  • [60] Trošt Sedej T. , Gaberščik A. 2008 — The effects of enhanced UV-B radiation on physiological activity and growth of Norway spruce planted outdoors over 5 years — Trees 22: 423–435.
  • [61] Turunen M. , Heller W. , Stich S. , Sandermann H. , Sutinen M.-L. 1999 — Effects of UV exclusion on phenolics compounds of young Scots pine seedlings in the subarctic — Environ. Pollut. 106: 225–234.
  • [62] Turunen M. , Sutinen M.-L. , Derome K. , Krywult M. , Smykla J. , King S., Lakkala K. 2005 — Ecophysiological responses of subarctic Scots pines to ultraviolet (UV) radiation — Pol. Bot. Stud. 19: 143–150.
  • [63] Ullah S. , Schlerf M. , Skidmore A. K. , Hecker C. 2012 — Identifying plant species using mid-wave infrared 2.5–6-μm and thermal infrared 8–14-μm emissivity spectra — Remote Sens. Environ. 118: 95–102.
  • [64] Vidaković M. 1991 — Morphology and variation (In: Conifers, Ed: B. Brekalo ) — Grafički zavod Hrvatske, Zagreb.
  • [65] Wallace A. M. , McCarthy A. , Nichol C. J. , Ren X. , Morak S. , Martinez-Ramirez D. , Woodhouse I. H. , Buller G. S. 2014 — Design and evaluation of multispectral lidar for the recovery of arboreal parameters — IEEE Trans Geosci Remote Sens. 52: 4942–4954.
  • [66] Yeats T. H. , Rose J. K. C. 2013 — The formation and function of plant cuticles — Plant Physiol. 161: 5–20.
  • [67] Yoshimura H. , Zhu H. , Wu Y. , Ma R. 2010 — Spectral properties of plant leaves pertaining to urban landscape design of broad-spectrum solar ultraviolet radiation reduction — Int. J. Biomet. 54: 179–191.
  • [68] Zhang Y. , Chen J. M. , Miller J. R. , Noland T. L. 2008 — Leaf chlorophyll content retrieval from airborne hyperspectral remote sensing imagery — Remote Sens. Environ. 112: 3234–3247.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cdfdb728-1084-4c12-ac0c-5b99f6172ab5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.