PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical Modeling of Reaeration Coefficient for Lakes – A Case Study of Sawa Lake, Iraq

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Accurate determination of reaeration coefficient in lakes is a key factor for accurate modeling of dissolved oxygen. This study developed a new numerical model to determine the lake reaeration coefficient of Sawa lake, Iraq based on solving the transform mechanisms of dissolved oxygen without the using the empirical and laboratory methods. The model solved the gas transport at the water-air surface numerically to predict the dissolved oxygen and the reaeration coefficient simultaneously. Results showed that the lake reaeration coefficient was 0.001 day-1 at 20 °C with low root mean squared errors (0.138, 0.137, and 0.168 mg/L for the three years of simulation 2007, 2012, and 2017, respectively) and absolute mean errors (0.121, 0.114, and 0.145 mg/L in 2007, 2012, and 2017, respectively). It was noticed that the lake habitat was impacted causing unhealthy conditions (low reaeration rate), and there was upward dissolved oxygen movement due to the presence of positive trend in the yearly cycle of temperature. In addition, including this numerical approach along with other water quality models can improve the predictions of other water quality parameters.
Twórcy
  • Department of Environmental Engineering, Faculty of Engineering, University of Babylon, Babylon, Iraq
  • College of Engineering, Al-Qasim Green University, Babylon, Iraq
  • College of Engineering, Al-Qasim Green University, Babylon, Iraq
  • Department of Engineering, UTM Razak School of Engineering and Advanced Technology, Universiti Teknologi Malaysia, Jalan Semarak, 54100, Kuala Lumpur, Malaysia
  • Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
Bibliografia
  • 1. Al-Dalimy, S.Z., Al-Zubaidi, H.A.M. 2023. Application of QUAL2K Model for Simulating Water Quality in Hilla River, Iraq. Journal of Ecological Engineering, 24(6), 272–280. https://doi.org/10.12911/22998993/162873
  • 2. Al-Handal, A., Riaux-Gobin, C., Abdulla, D., Ali, M. 2014. Cocconeis sawensis Sp. Nov. (Bacillariophyceae) from a Saline Lake (Sawa Lake), South Iraq: Comparison with Allied Taxa. Phytotaxa, 181(4), 216–228. doi: 10.11646/phytotaxa.181.4.2
  • 3. Al Mamun, A., Nuruzzaman, M. 2023. Assessing Reaeration Rate Equations for Modelling Dissolved Oxygen of Pusu River in Malaysia. ASM Science Journal, 18, 1–14. https://doi.org/10.32802/asmscj.2023.1193
  • 4. Al-Zubaidi, H.A.M. 2018. 3D hydrodynamic, temperature, and water quality numerical model for surface waterbodies: development, verification, and field case studies. Dissertations and Theses. Paper 4500. doi: 10.15760/etd.6384
  • 5. Al-Zubaidi, H.A.M., Wells S.A. 2020. Analytical and field verification of a 3D hydrodynamic and water quality numerical scheme based on the 2D formulation in CE-QUAL-W2. Journal of Hydraulic Research, 58(1), 152–171. https://doi.org/10.1080/00221686.2018.1499051
  • 6. Ashok K., Keshari, A.K. 2018. Estimation of re-aeration coefficient using MLR for modelling water quality of rivers in urban environment. Groundwater for Sustainable Development, 7, 430–435. https://doi.org/10.1016/j.gsd.2017.11.006
  • 7. Awadh, S.M., Muslim, R. 2014. The formation models of gypsum barrier, chemical temporal changes and assessments the water quality of Sawa Lake, Southern Iraq. Iraqi Journal of Science 55(1), 161–173. https://www.iasj.net/iasj/article/86984
  • 8. Chapra, S.C. 2008. Surface water-quality modeling. Long Grove, IL: Waveland Press, Inc.
  • 9. Cole, T.M., Wells, S.A. 2006. CE-QUAL-W2: A two-dimensional, laterally averaged, hydrodynamic and water quality model, Version 3.5. Instruction Report EL-06-1, US Army Engineering and Research Development Center. http://archives.pdx.edu/ds/psu/12049
  • 10. Hassan, F.M., Al-Saadi, H.A., Alkam, F.M. 2006. Phytoplankton composition of Sawa Lake, Iraq. Iraqi Journal of Aquaculture Journal, 3(2), 99–107. doi:10.21276/ijaq.2006.3.2.4
  • 11. Mohammad, H.H. 2005. Some physico-chemical properties and biomass of algae in Sawa Lake. Marina Mesopotamica, 20, 345–403.
  • 12. Mortimer, C.H. 1981. The oxygen content of air-saturated fresh waters over ranges of temperature and atmospheric pressure of limnological interest. SIL Communications, 1953–1996, 22: 1(1–23). do i:10.1080/05384680.1981.11904000
  • 13. Pena-Guzman, C., Orduz, A., Rodriguez, M., Perez, D. 2021. Analysis and comparison of 20 empirical equations for reaeration rates in urban rivers. Environmental Engineering and Management Journal, 20(12), 1949–1962. Retrieved from https://eemj.eu/index.php/EEMJ/article/view/4434
  • 14. Ziyadi, M., Jawad, L., Almukhtar, M., Pohl, T. 2015. Day’s goby, Acentrogobius dayi Koumans, 1941 (Pisces: Gobiidae) in the desert Sawa Lake, south-west Baghdad, Iraq. Marine Biodiversity Records, 8, E148. doi:10.1017/S1755267215001220
  • 15. Boschetti, T., Awadh, S.M., Salvioli-Mariani, E. 2018. The origin and MgCl2 –NaCl variations in an athalassic sag pond: Insights from chemical and isotopic data. Aquatic Geochemistry, 24(2), 137–162. doi:10.1007/s10498-018-9337-y
  • 16.Ranjith, S., Shivapur, A.V., Kumar, P.S.K., Hiremath, C.G. 2019. Assessment of Reaeration Equations for River Tungabhadra, Karnataka, India and Generation of the Refined Equation. Journal of Geography, Environment and Earth Science International, 21(4), 1–9. doi:10.9734/jgeesi/2019/v21i430130
  • 17. Wagner, R.W., Stacey, M., Brown, L.R., Dettinger, M. 2011. Statistical models of temperature in the Sacramento-San Joaquin Delta under climate-change scenarios and ecological implications. Estuaries and Coasts, 34(3), 544–556. doi:10.1007/s12237-010-9369-z
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cdf5729b-c3e5-424d-aadd-380625fdac90
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.