Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
It is of great significance for economic development and environment protection to recover pyrite from high sulfur gangue in China. Due to problem of global water shortage, it is urgent to explore more efficient separation methods without consuming water in mineral processing field. This study has proposed an innovative method for pyrite recovery using vibration fluidized bed based on particle density difference. Detailed separation results depicted that sulfur content of -6+3 mm, -3+1 mm and -1+0.5 mm samples increased to ca. 37%, 33% and 27%. The highest comprehensive recovery rate reached ca. 72%. Compared with recent wet methods, separation results indicated that it was satisfied for pyrite recovery using vibrated fluidized bed. Thus, it is a feasible way for pyrite recovery from high sulfur gangue through the dry method of fluidized bed by collaborating vibration energy.
Rocznik
Tom
Strony
70--81
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
- Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, China
autor
- Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, China
autor
- Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, China
autor
- Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, China
autor
- Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, China
Bibliografia
- BROZEK, M., MLYNARCZYKOWSKA, A., 2013. An Analysis of Effect of Particle Floatation of Coal, Physicochem. Probl. Min. Process. 49(1), 341–356.
- BUNKHOLT, I., KLEIV, R. A., 2013. The Colouring Effect of Pyrrhotite and Pyrite on Micronised Calcium Carbonate Slurries for the Paper Industry. Miner. Eng. 52(5), 104-110.
- CHIBA, S., NIENOW, A. W., CHIBA T., KOBAYASHI, H., 1980. Fluidised Binary Mixtures in Which the Denser Component May be Flotsam. Powder. Technol. 26(1), 1-10.
- DENG, L., LI, G., CAO, Y., 2017. Effect of flotation frothers on bubbles coalescence behavior. J. China. Uni. Min. & Technol. 46(2), 410-414.
- DONG, L., ZHAO, Y.M., PENG, L.P., 2015. Characteristics of Pressure Fluctuations and Fine Coal Preparation in Gas-vibro Fluidized Bed. Particuology. 21,146-53.
- HAO, G., YUN, F., ZHAN, L., SEN, Y., SONG, Z., 2013. Study on the Property and Reuse of Coal Gangue in Liupanshui, Guizhou Province, Int. J. Min. 27(5), 366-373.
- HE, S., 2008, Separation of Pyrite in Coal Measures. Coal Processing & Comprehensive Utilization. 5, 42-46.
- HUANG, Y., HE, Q., TANG, L., 2008. Application of Large Cone Dense-Medium Cyclone in Distributing High Density Material, China. Coal. 34, 85-86.
- HUANG, Y., 2010. Experimental Study on Coal and Sulfur Separation with Short Cone Cyclone in Washing High-Sulfur Coal Rock, Min. Processing Equipment. 38,109-111.
- KHATAEE, A., GHOLAMI, P., SHEYDAEI, M., 2015. Heterogeneous Fenton Process by Natural Pyrite for Removal of a Textile Dye from Water: Effect of Parameters and Intermediate Identification. J. Taiwan. Inst. Chem. E. 58, 366-373.
- KUMAR, S., VENUGOPAL, R., 2017. Performance analysis of jig for coal cleaning using 3D response surface methodology, Int. J. Min. Sci. and Technol. 27(2), 333-337.
- LEDIN, M., PEDERSEN, K., 1996. The Environmental Impact of Mine Wastes-Roles of Microorganisms and Their Significance in Treatment of Mine Wastes, Earth-Sci. Rev. 41(1), 67-108.
- LI, X., 2010. Study on Washability of Pyrite Recovery from High-Sulfur Coal Refuse, Clean. Coal. Technol. 16(6), 61-63.
- LI, X., 2010. Retrieving Pyrite from Coal Gangue through Shaking Table Separation, Shanxi. Coal. 30(4), 76-77.
- LIAO, Z., 2006. Research on Carbon Reduction and Sulfur Lift of Coal-Derived Pyrite, Metal. Mine. 8, 34-36.
- NAKHAEI, F., IRANNAJAD, M., 2013. Prediction of On-line Froth Depth Measurement Errors in Industrial Flotation Columns: A Promising Tool for Automatic Control. Physicochem. Probl. Mi. 49(2), 757–768.
- OSHITANI, J., ISEI, Y., YOSHIDA, M., GOTOH, K., FRANKS, G. V., 2012. Influence of Air Bubble Size on Float-Sink of Spheres in a Gas-solid Fluidized Bed. Adv. Powder Technol. 23, 120-23.
- PAN, J., 1997. Mineral Processing of High Sulfur Coal Gangue. J. Shandong. I. Build. Mater. 11, 37-38.
- PAN, S., QUAN, Q., YANG, H., 2014. Research on Separating of Coal Bearing Pyrite by Gravity-fed Three Product Dense Medium Cyclone, Coal. Prep. Technol. 2, 5-13.
- PATRA, P., NATARAJAN, K.A., 2004. Microbially Enhanced Removal of Pyrite and Chalcopyrite from Oxide Gangue Minerals with Reference to Desulfurization of Tailings. Miner. Metall. Proc. 21(4), 169-178.
- QUEROL, X., IZQUIERDO, M., MONFORT, E., ALVAREZ, E., FONT, O., MORENO, T., WANG, Y., 2008. Environmental Characterization of Burnt Coal Gangue Banks at Yangquan, Shanxi Province, China. Int. J. Coal. Geo. 75(2), 93–104.
- SAHU, A.K., TRIPATHY, A, BISWAL, S.K., 2013. Study on Particle Dynamics in Different Cross Sectional Shapes of Air Dense Medium Fluidized Bed Separator. Fuel. 111: 472–477.
- SEKITO, T., MATSUTO, T., TANAKA, N., 2006. Application of A Gas-solid Fluidized Bed Separator for Shredded Municipal Bulky Solid Waste Separation. Waste. Manage. 26(12), 1422-1429.
- TAN, M.B., HE, J.F, 2017. Lignite separation using a gas-solid dense medium fluidized bed with a secondary air distribution layer. J. China. Uni. Min. Technol. 46(2), 404-409.
- Tang, L., 2017. Characteristics of fluidization and dry-beneficiation of a wide-size-range medium-solids fluidized bed. Int. J. Min. Sci. and Technol. 27(3), 467-471.
- WANG, L., QI, Z., 2002. Research on Carbon Reduction and Sulfur Extraction from High Carbon Pyrite. Coal. Prep. Technol. 3, 16-17.
- XING M. X., GAO Q. M., 2009. Research on Green Mining of Coal Resources in China: Current Status and Future Prospects. J. Min, Safe. Eng. 26(1), 1-14.
- YANG, X.L., ZHAO, Y.M., LUO, Z.F., 2013. Fine Coal Dry Cleaning Using A Vibrated Gas-fluidized Bed. Fuel. Process. Technol. 106, 338−343.
- YU, L., YUAN, Y., LIU, X., SUN, H., WEN, N., 2013. Improvement on Pozzolanic Reactivity of Coal Gangue by Integrated Thermal and Chemical Activation. Fuel. 109, 527–533.
- ZHANG, R., ZHOU, H. W., JU, Y., ZHANG, Z.T., 2015. Fractal and Volume Characteristics of 3D Mining-induced Fractures under Typical Mining Layouts. Environ. Earth. Sci. 73(10), 6069-6080.
- ZHAO, Y.M., LI, G.M., LUO, Z.F., ZHANG, B., DONG, L., LIANG, C., 2016. Industrial Application of Modularized Dry Coal Beneficiation Technique Based on A Novel Air Dense Medium Fluidized Bed. Int. J. Coal. Prep. Util. 37 (1), 44-57.
- ZHOU, C., DUAN, C., ZHANG, B., ZHAO, Y., 2016. Pyrite Enrichment in Vibrated Fluidized Bed Based on Density Segregation. Sep. Sci. Technol. 51(9), 1446-1454.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cdef7641-825b-4e6d-a3db-db9c75386c60