Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
The principle of work of many metallurgical shaft furnaces is based on the flow of reaction gas through the descending packed bed composed of metallurgical materials. Hot gases flow up the shaft furnace through the column of materials, give their heat to the descending charge materials. At the same time due to their reducing nature they interact chemically, causing the reduction of oxides inside the charge. In real conditions, during the course of the process, the powder is generated, the source of which is the batch materials or it is introduced into the as part of the process procedure. The powder in the form of thin slurry is carried by the stream of flowing gas. Such multiphase flow might considerably affect the permeability of the charge due to the local holdup of powder. The holdup of solid phase in packed beds of metallurgical shaft furnaces leads to radial changes in bed porosity. Radial changes in bed porosity uneven gas flow along the radius of the reactor and negatively affect the course and efficiency of the process. The article describes the model studies on radial distribution of carbon powder holdup in the packed bed composed of metallurgical materials. The powder was divided into fractions – "static" and "dynamic". Large diversity of carbon powder distribution was observed in the function of the radius of reactor in relation to the bed type, apparent velocity of gas carrying powder and the level of bed height.
Wydawca
Czasopismo
Rocznik
Tom
Strony
999--1002
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
autor
- Silesian University of Technology, Faculty of Materials Engineering and Metallurgy, Katowice, Poland
Bibliografia
- [1] Sh. Raygan, H. Abdizadeh, A. Eskandari-Rizi, Journal of Iron and Steel Research International 17, 8-12 (2010).
- [2] Sh.-W. Du, W.-H. Chen, J. A. Lucas, Energy 35, 576-581 (2010).
- [3] Sh.-fu. Zhang, Ch.-gu. Bai, Li.-yi. Wen, Gu.-b. Qiu, Xu.-w. Lu, Journal of Iron and Steel Research International 17, 8-12 (2010).
- [4] Y. S. Shen, A. B. Yu, P. R. Austin P. Zulli, Powder Technology 223, 27-38 (2012).
- [5] Ch. Zou, Li-yi. Wen, J-x. Zhao, R-m. Shi, Journal of Iron and Steel Research International 24, 8-17 (2017).
- [6] S. G. Sahu, A. Mukherjee, M. Kumar, A. K. Adak, P. Sarkar, S. Biswas, H. P. Tiwari, A. Das, P. K. Banerje, Applied Thermal Engineering 73, 1014-1021 (2014).
- [7] Sh.-W. Du, Ch.-P. Yeh, W.-H. Chen, Ch.-H. Tsai, J. A. Lucas, Fuel 143, 98-106 (2015).
- [8] M. Saternus, Metalurgija 50, 257-260 (2011).
- [9] T. Merder, J. Pieprzyca, M. Saternus, Metalurgija 53, 155-158 (2014).
- [10] M. Saternus, J. Botor, Archives of Metallurgy and Materials 55, 463-475 (2010).
- [11] S. Gil, J. Góral, J. Ochman, M. Saternus, W. Bialik, Metalurgija 53, 447-450 (2014).
- [12] M. Warzecha, T. Merder, H. Pfeifer, J. Pieprzyca, Steel Research International 81, 987-993 (2010).
- [13] B. Panic, Archives of Metallurgy and Materials 59 (2), 795-800 (2014).
- [14] B. Panic, K. Janiszewski, Metalurgija 53 (3), 331-334 (2014).
- [14] B. Panic, Modelowanie zjawisk zachodzących przy dwufazowym - gaz+pył - przepływie przez ruchome złoża kawałkowe, Wydawnictwo Politechniki Śląskiej, Gliwice (2013).
Uwagi
EN
1. This paper was created with the financial support of Polish Ministry for Science and Higher Education under internal grant BK-221/RM0/2018 for Faculty of Materials Engineering and Metallurgy, Silesian University of Technology, Poland.
PL
2. Błędna numeracja bibliografii.
PL
3. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cde89392-22fd-4148-a863-bdc536861535