PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Kneser-type oscillation criteria for second-order half-linear advanced difference equations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The authors present Kneser-type oscillation criteria for a class of advanced type second-order difference equations. The results obtained are new and they improve and complement known results in the literature. Two examples are provided to illustrate the importance of the main results.
Rocznik
Strony
55--64
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
  • Presidency College, Department of Mathematics, Chennai - 600 005, India
  • University of Tennessee at Chattanooga, Department of Mathematics, Chattanooga, TN 37403, USA
  • University of Madras, Ramanujan Institute for Advanced Study in Mathematics, Chennai - 600 005, India
Bibliografia
  • [1] R.P. Agarwal, Difference Equations and Inequalities, Dekker, New York, 2000.
  • [2] R.P. Agarwal, M. Bohner, S.R. Grace, D. O’Regan, Discrete Oscillation Theory, Hindawi, New York, 2005.
  • [3] R.P. Agarwal, C. Zhang, T. Li, New Kamenev type oscillation criteria for second order nonlinear advanced dynamic equations, Appl. Math. Comput. 225 (2013), 822–823.
  • [4] R. Bellman, K.L. Cooke, Differential-Difference Equations, Math. Sci. Eng., vol. 6, Academic Press, 1963.
  • [5] G.E. Chatzarakis, I.P. Stavroulakis, Oscillation of advanced difference equations with variable arguments, Electron. J. Qual. Theory Differ. Equ. 2012 (2012), no. 79, 1–16.
  • [6] G.E. Chatzarakis, E. Thandapani, New oscillation criterion of first order difference equations with advanced argument, Adv. Math. Sci. Journal 10 (2021), 971–979.
  • [7] E. Chandrasekar, G.E. Chatzarakis, G. Palani, E. Thandapani, Oscillation criteria for advanced difference equations of second order, Appl. Math. Comput. 372 (2020), 124963.
  • [8] G.E. Chatzarakis, P. Dinaker, S. Selvarangam, E. Thandapani, Oscillation properties of second order quasilinear difference equations with unbounded delay and advanced neutral terms, Math. Bohem. (2021), to appear.
  • [9] G.E. Chatzarakis, J. Džurina, I. Jadlovská, New oscillation criteria for second order half linear advanced differential equations, Appl. Math. Comput. 347 (2019), 404–416.
  • [10] G. Chatzarakis, S.R. Grace, I. Jadlovská, Oscillation theorems for certain second order nonlinear retarded difference equations, Math. Slovaca (2021), to appear.
  • [11] C. Dharuman, J.R. Graef, E. Thandapani, K.S. Vidhyaa, Oscillation of second order difference equation with a sublinear neutral term, J. Math. Appl. 40 (2017), 59–67.
  • [12] P. Dinakar, S. Selvarangam, E. Thandapani, New oscillation condition for second order halflinear advanced difference equations, Int. J. Math. Eng. Manag. Sci. 4 (2019), 1459–1470.
  • [13] S.R. Grace, J. Alzabut, Oscillation results for nonlinear second order difference equations with mixed neutral terms, Adv. Difference Equ. 2020 (2020), Article no. 8.
  • [14] J.R. Graef, Oscillation of higher order functional differential equations with an advanced argument, Appl. Math. Lett., to appear.
  • [15] I. Jadlovská, Oscillation criteria of Kneser-type for second-order half-linear advanced differential equations, Appl. Math. Lett. 106 (2020), 106354.
  • [16] R. Kanagasabapathi, S. Selvarangam, J.R. Graef, E. Thandapani, Oscillation results for nonlinear second order difference equations with advanced arguments, Indian J. Math. (2021), to appear.
  • [17] O. Ocalan, O. Akhi, Oscillatory properties for advanced difference equations, Novi Sad J. Math. 37 (2007), 39–47.
  • [18] B. Ping, M. Han, Oscillation of second order difference equations with advanced arguments, Conference Publication, Amer. Inst. Math. Sciences (2003), 108–112.
  • [19] H. Wu, L. Erbe, A. Peterson, Oscillation of solutions to second order half-linear delay dynamic equation on time scales, Electron. J. Differential Equations 2016 (2016), no. 71, 1–15.
  • [20] B. Zhang, S.S. Cheng, Comparison and oscillation theorems for an advanced type difference equations, Ann. Differ. Equ. 4 (1995), 485–494.
  • [21] Z. Zhang, T. Li, Oscillation theorems for second order advanced functional difference equations, Comput. Math. Appl. 36 (1998), 11–18.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cde62183-639e-440d-89e3-01c92320fed9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.