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Abstract. The authors present Kneser-type oscillation criteria for a class of advanced
type second-order difference equations. The results obtained are new and they improve
and complement known results in the literature. Two examples are provided to illustrate
the importance of the main results.
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1. INTRODUCTION

Here we investigate the oscillatory behavior of solutions of the second-order quasi-linear
difference equation with an advanced argument

∆(µ(n)(∆u(n))α) + f(n)uα(σ(n)) = 0, n ≥ n0, (1.1)

where we assume that α is a quotient of odd positive integers, {µ(n)} and {f(n)} are
positive real sequences, and {σ(n)} is a sequence of integers with σ(n) ≥ n + 1 for all
n ≥ n0. Throughout this paper, and without further mention, we assume that

Π(n0) =
∞∑

n=n0

1
µ1/α(n) < ∞. (1.2)

By a solution of equation (1.1), we mean a nontrivial sequence {u(n)} that satisfies
(1.1) for all n ≥ n0. A solution {u(n)} of (1.1) is called oscillatory if it is neither
eventually negative nor eventually positive, and it is said to be nonoscillatory otherwise.
Equation (1.1) is said to be oscillatory if all its solutions are oscillatory.
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Difference equations with an advanced argument can be applied to a variety of
real world problems in which the evolution rate depends on the future as well as on
the present state. Thus, it would be possible to include an advanced argument in an
equation in an effort to model events that depend on future actions. Such phenomena
occur, for example, in areas such as population dynamics, economics, and control
theory; see the monograph by Bellman and Cooke [4, Sections 3.4 and 5.6].

The oscillatory and asymptotic behavior of solutions of delay difference equations
has received a great deal of attention in the last three decades; see, for example,
[1, 2, 8, 10, 11, 13, 19] and the papers cited therein for recent results of this type.
However, far few results are reported on the oscillation of advanced type difference
equations (see [3, 5–7,9, 12,16–18,20,21]).

Our aim for this paper is to contribute to the under developed oscillation theory
of second-order noncanonical difference equations with advanced arguments. We use
only one condition to obtain the oscillation of equation (E). Furthermore, the results
presented in this paper improve and complement those in [3, 7, 12,18, 21]. For related
results concerning oscillation of advanced type differential equations, we refer the
reader to [9, 14,15].

2. MAIN RESULTS

In this section, we present the main results in the paper. Define

R∗ = lim inf
n→∞

µ1/α(n)Πα(σ(n))Π(n + 1)f(n) (2.1)

and set

β0 = R∗
α

. (2.2)

Notice that (2.1) implies that for any β ∈ (0, 1) there is an integer Nβ such that

µ1/α(n)Πα(σ(n))Π(n + 1)f(n) ≥ αβ (2.3)

for n ≥ Nβ .
The following lemma provides important information about nonoscillatory solutions

of (1.1) and will be used to prove our main results. We will also ask that

∞∑

s=n0

1
µ1/α(s)Πα(s) = ∞. (2.4)
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Lemma 2.1. Let β0 > 0 and condition (2.4) hold. If (1.1) has an eventually positive
solution {u(n)}, then:

(i) {u(n)} and {µ(n)(∆u(n))α} are decreasing;
(ii) limn→∞ u(n) = 0;
(iii) { u(n)

Π(n) } is eventually nondecreasing;
(iv) the function

z(n) = u(n) + Π(n)µ1/α(n)∆u(n) (2.5)
is nonnegative, and

∆z(n) ≤ −βuα(n + 1)∆u(n)
µ(n + 1)Πα(n + 1)(∆u(n + 1))α

(2.6)

eventually.
Proof. Let {u(n)} be a positive solution of (1.1) and choose β ∈ (0, 1) and an integer
Nβ ≥ n0 so that (2.3) holds for all n ≥ n1 for some n1 ≥ Nβ . Then

∆(µ(n)(∆u(n))α) < 0,

µ(n)(∆u(n))α is nonincreasing, and either ∆u(n) > 0 or ∆u(n) < 0 eventually.
(i) Assume, for the sake of a contradiction, that ∆u(n) > 0 for all n ≥ n2 ≥ n1.

Then u(σ(n)) ≥ u(σ(n1)) = M > 0, and so from (1.1) and (2.3), we have

−∆(µ(n)(∆u(n))α) = f(n)uα(σ(n)) ≥ βαMα

µ1/α(n)Πα(σ(n))Π(n + 1)

for all n ≥ n3 for some n3 ≥ n2. In view of (1.2), the sequence {Π(n)} is decreasing,
and so the above inequality becomes

−∆(µ(n)(∆u(n))α) ≥ βαMα

µ1/α(n)Πα+1(n + 1) . (2.7)

Summing (2.7) from n3 to n − 1, we obtain

−µ(n)(∆u(n))α + µ(n3)(∆u(n3))α ≥ αβMα
n−1∑

s=n3

1
µ1/α(s)Πα+1(s + 1)

≥ αβMα
n−1∑

s=n3

Π(s)∫

Π(s+1)

dV

V α+1

= βMα

(
1

Πα(n) − 1
Πα(n3)

)

(2.8)

or
µ(n)(∆u(n))α ≤ u(n3)(∆u(n3))α − βMα

(
1

Πα(n) − 1
Πα(n3)

)
→ −∞

as n → ∞, which is a contradiction. This proves (i).
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(ii) Since {u(n)} is positive and decreasing, limn→∞ u(n) = M ≥ 0. If M > 0, then
using (2.3), we arrive at (see (2.8))

−µ(n)(∆u(n))α ≥ βMα

(
1

Πα(n) − 1
Πα(n4)

)
. (2.9)

for n ≥ n4 for some n4 ≥ n3. Since 1
Π(n) → ∞ as n → ∞, for any ℓ ∈ (0, 1), there is

an integer n5 ≥ n4 such that

1
Πα(n) − 1

Πα(n4) ≥ ℓ

Πα(n) , n ≥ n5. (2.10)

Using (2.10) in (2.9), we obtain

−∆u(n) ≥ (βMαℓ)1/α

µ1/α(n)Π(n) = M1
1

µ1/α(n)Π(n) ,

where M1 = (βMαℓ)1/α. Summing and using (2.4) shows u(n) → −∞ as n → ∞,
which is a contradiction to the positivity of u(n). Hence, M = 0, which proves (ii).

(iii) Using the fact that {µ1/α(n)∆u(n)} is nonincreasing gives

u(n) ≥ −
∞∑

s=n

1
µ1/α(s)µ1/α(s)∆u(s) ≥ −Π(n)µ1/α(n)∆u(n), (2.11)

that is,

∆
(

u(n)
Π(n)

)
= µ1/α(n)Π(n)∆u(n) + u(n)

µ1/α(n)Π(n)Π(n + 1) ≥ 0,

and so (iii) holds.
(iv) From (2.11), it is clear that z(n) ≥ 0. Now from the definition of z(n), we see

that
∆z(n) = Π(n + 1)∆(µ1/α(n)∆u(n)). (2.12)

By the Mean-Value Theorem,

∆((µ(n)(∆u(n))α)1/α) = 1
α

t1/α−1∆(µ(n)(∆u(n))α), (2.13)

where
µ(n + 1)(∆u(n + 1))α < t < µ(n)(∆u(n))α. (2.14)

From (2.12), (2.13), (2.3), and equation (1.1), we obtain

∆z(n) = − 1
α

t1/α

t
Π(n + 1)f(n)uα(σ(n)) ≤ −βt1/αuα(σ(n))

µ1/α(n)Πα(σ(n))t . (2.15)

From (2.14) and the fact that t is negative,

∆z(n) ≤ −βµ1/α(n)∆u(n)uα(σ(n))
µ1/α(n)µ(n + 1)(∆u(n + 1))αΠα(σ(n)) .
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Finally, applying (iii), we obtain

∆z(n) ≤ −βuα(n + 1)∆u(n)
µ(n + 1)Πα(n + 1)(∆u(n + 1))α

.

This shows (iv) holds and completes the proof of the lemma.

Lemma 2.2. Let β0 > 0 and condition (2.4) hold. If {u(n)} is an eventually positive
solution of (1.1), then for any fixed β ∈ (0, 1), {u(n)/Π1−β(n)} is nondecreasing for
sufficiently large n.

Proof. Fix β ∈ (0, 1) and let {u(n)} be a positive solution of (1.1). Choose n1 ≥ n0 so
that u(n) > 0, (2.3) holds, and parts (i)–(iv) of Lemma 2.1 hold for all n ≥ n1. Using
(2.11) in (2.6), we obtain

∆z(n) ≤ β∆u(n).

Summing the last inequality from n to ∞ and using part (ii) of Lemma 2.1, we have

z(n) ≥ z(∞) − βu(∞) + βu(n) ≥ βu(n),

which in view of the definition of z(n) gives

(1 − β)u(n) ≥ −µ1/α(n)Π(n)∆u(n). (2.16)

Now

∆
(

u(n)
Π1−β(n)

)
= Π1−β(n)∆u(n) − u(n)∆Π1−β(n)

Π1−β(n)Π1−β(n + 1) . (2.17)

Since 1 − β < 1, by the Mean-Value theorem, we have

−∆Π1−β(n) ≥ (1 − β)Π−β(n)
µ1/α(n) .

From this, (2.16), and (2.17),

∆
(

u(n)
Π1−β(n)

)
= Π(n)µ1/α(n)∆u(n) + (1 − β)u(n)

µ1/α(n)Π(n)Π1−β(n + 1) ≥ 0.

This proves the lemma.

Theorem 2.3. In addition to (2.4), assume that

lim
n→∞

Π(n + 1)
Π(σ(n)) = ∞. (2.18)

If R∗ > 0, then equation (1.1) is oscillatory.
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Proof. Choose β ∈ (0, 1), let {u(n)} be a positive solution of (1.1), and choose n1 ≥ n0
so that u(n) > 0, (2.3) holds, and Lemmas 2.1 and 2.2 hold for n ≥ n1. Using (2.3)
and the fact that { u(n)

Π1−β(n) } is nondecreasing, from (1.1) we see that

−∆(µ(n)(∆u(n))α) = f(n)uα(σ(n)) ≥ αβ

µ1/α(n)Πα(σ(n))Π(n + 1)uα(σ(n))

= αβ

µ1/α(n)Παβ(σ(n))Π(n + 1)Πα(1−β)(σ(n))uα(σ(n))

≥ αβ

µ1/α(n)Πα+1(n + 1)uα(σ(n + 1))
(

Π(n + 1)
Π(σ(n))

)αβ

≥ Bαβ
αuα(n + 1)

µ1/α(n)Πα+1(n + 1) ,

(2.19)

where we have used the fact that (2.18) implies Π(n+1)
Π(σ(n)) ≥ B1/β for some B > 0 and

n ≥ n2 for some n2 ≥ n1. Summing (2.19) from n2 to n − 1, we obtain

−µ(n)(∆u(n))α ≥ Bαβ

n−1∑

s=n2

αuα(s + 1)
µ1/α(s)Πα+1(s + 1)

≥ Bαβuα(n)
n−1∑

s=n2

α(Π(s) − Π(s + 1))
Πα+1(s + 1)

≥ Bαβuα(n)
n−1∑

s=n2

α

Π(s)∫

Π(s+1)

dV

V α+1

= Bαβuα(n)
(

1
Πα(n) − 1

Πα(n2)

)

≥ Bαβℓ1
uα(n)
Πα(n)

for n ≥ n3 for some ℓ1 ∈ (0, 1) and n3 ≥ n2.
Since ℓ1 ∈ (0, 1), β ∈ (0, 1), and B > 0 is arbitrary, we can choose B such that

B > 1
(ℓβ)1/α . Then (2.20) yields

−Π(n)µ1/α(n)∆u(n) > B(ℓβ)1/αu(n) > u(n),

which contradicts (2.11). This completes the proof of the theorem.

To prove our next result, we assume that there is a constant λ > 0 such that

Π(n + 1)
Π(σ(n)) ≥ λ. (2.20)
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Theorem 2.4. Let β0 > 0 and conditions (2.4) and (2.20) hold. If

lim sup
n→∞

Πα(n)
n−1∑

s=n1

f(s)
(

Π(σ(s))
Π(s + 1)

)α

>
(1 − β)α

λαβ
(2.21)

for any n1 ≥ n0, then (1.1) is oscillatory.
Proof. Choose β ∈ (0, 1), let {u(n)} be a positive solution of (1.1), and choose n1 ≥ n0
so that u(n) > 0, (2.3) holds, and Lemmas 2.1 and 2.2 hold for n ≥ n1. Summing (1.1)
from n1 to n − 1 gives

−µ(n)(∆u(n))α = −µ(n1)(∆u(n1)) +
n−1∑

s=n1

f(s)uα(σ(s))

≥
n−1∑

s=n1

f(s)Π(1−β)α(σ(s))
(

u(σ(s))
Π(1−β)(σ(s))

)α

≥
n−1∑

s=n1

f(s)Π(1−β)α(σ(s))
(

u(s + 1)
Π(1−β)(s + 1)

)α

since u(n)
Π(n)1−β is nondecreasing. Then, from (2.20),

−µ(n)(∆u(n))α ≥ uα(n)
n−1∑

s=n1

f(s)
(

Π(σ(s))
Π(s + 1)

)α

λαβ . (2.22)

Now using (2.16) in (2.22), we obtain

1 ≥ Πα(n)λαβ

(1 − β)α

n−1∑

s=n1

f(s)
(

Π(σ(s))
Π(s + 1)

)α

,

which contradicts (2.21). This completes the proof.

Remark 2.5. Clearly our Theorem 2.4 improves Corollary 8 of [12].

3. EXAMPLES

In this section, we provide two examples to illustrate the main results.
Example 3.1. Consider the second-order noncanonical advanced difference equation

∆(n3(n + 1)3(∆u(n))3) + (n + 1)6u3((n + 1)2) = 0, n ≥ 1. (3.1)

Here µ(n) = n3(n + 1)3, f(n) = (n + 1)6, σ(n) = (n + 1)2, and α = 3. Also, Π(n) = 1
n

and
lim

n→∞
Π(n + 1)
Π(σ(n)) = lim

n→∞
(n + 1) = ∞,



62 N. Indrajith, John R. Graef, and E. Thandapani

so (2.18) is satisfied. Notice that (2.3) holds for β = 1
3 , and it is clear that (2.4) also

holds. Now

R∗ = lim inf
n→∞

n(n + 1) 1
(n + 1)6

1
(n + 1)(n + 1)6 = lim inf

n→∞
n > 0.

Therefore, by Theorem 2.3, equation (3.1) is oscillatory.

Example 3.2. Consider the second-order noncanonical advanced difference equation

∆(n(n + 1)∆u(n)) + γu(2n) = 0, n ≥ 1. (3.2)

Here µ(n) = n(n + 1), f(n) = γ ≥ 1, σ(n) = 2n, and α = 1. Now Π(n) = 1
n and

condition (2.20) becomes

lim inf
n→∞

Π(n + 1)
Π(σ(n)) = lim inf

n→∞
2n

(n + 1) = 2 = λ.

We see that
R∗ = lim inf

n→∞
n(n + 1). 1

2n
.

1
(n + 1)γ = γ/2 > 0

which implies β0 > 0. By taking β = 1
2 , we see that (2.3) is satisfied. Clearly, (2.4)

holds as well. Condition (2.21) becomes

lim sup
n→∞

1
n

n−1∑

s=1
γ

(
s + 1

2s

)
> lim sup

n→∞

1
n

n−1∑

s=1
γ

( s

2s

)
= lim sup

n→∞

1
n

(
n − 1

2

)
γ = γ/2.

That is, γ/2 > 1
2

√
2 , or γ > 1√

2 , and so (2.21) holds. Therefore, by Theorem 2.4,
equation (3.2) is oscillatory.

Remark 3.3. Note that the Example 3.2 was considered in [12] where it was shown
that equation (3.2) is oscillatory if γ > 2; in [16] it was shown that the equation (3.2)
is oscillatory if γ = 2. Therefore, our Theorem 2.4 improves Theorem 4 in [12] and
Theorem 3.3 in [16].
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