PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

A review on active techniques in microchannel heat sink for miniaturization problem in electronic industry

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
With continuous miniaturization of modern electronic components, the need of better cooling devices also keeps on increasing. The improper thermal management of these devices not only hampers the efficiency but can also cause permanent damage. Among various techniques, microchannel heat sink has shown most favourable performance. To further enhance the performance, two techniques i.e., active and passive are used. In passive technique, no external power source is required like heat sink design alteration and working fluid modification. External power source is necessary for heat transfer augmentation in the microchannel heat sink when using the active approach. Due to compact size of microchannel, active techniques are not used more often. However, the present work highlights the different active technique used in microchannel i.e., Electrostatic forces, flow pulsation, magnetic field, acoustic effects, and vibration active techniques. Above mentioned techniques have been analysed in detail.
Twórcy
  • Mechanical Engineering Department, SOET, K R Mangalam University Gurgaon -122103, India
  • Mechanical Engineering Department, SOET, K R Mangalam University Gurgaon -122103, India
  • Mechanical Engineering Department, SOET, K R Mangalam University Gurgaon -122103, India
  • Mechanical Engineering Department, Graphic Era Deemed to Be University Dehradun, Uttarakhand, 248002, India
Bibliografia
  • [1] Y.H. Chen, C.A. Yang, C.C. Kuo, M.F. Chen, C.H. Tung, W.C. Chiou, D. Yu, Ultra High Density SoIC with Sub-micron Bond Pitch, in: Proc. - Electron. Components Technol. Conf., IEEE, 2020: pp. 576–581. https://doi.org/10.1109/ECTC32862.2020.00096.
  • [2] M.-Y. Li, S.-K. Su, H.-S.P. Wong, L.-J. Li, How 2D semiconductors could extend Moore’s law, Nature. 567 (2019) 169–170. https://doi.org/10.1038/d41586-019-00793-8.
  • [3] M. Pedram, S. Nazarian, Thermal Modeling, Analysis, and Management in VLSI Circuits: Principles and Methods, Proc. IEEE. 94 (2006) 1487–1501. https://doi.org/10.1109/JPROC.2006.879797.
  • [4] P. Bhandari, Y.K. Prajapati, Thermal performance of open microchannel heat sink with variable pin fin height, Int. J. Therm. Sci. 159 (2021) 106609. https://doi.org/10.1016/j.ijthermalsci.2020.106609.
  • [5] I. Mudawar, Two-Phase Microchannel Heat Sinks: Theory, Applications, and Limitations, J. Electron. Packag. 133 (2011) 041002-1–31. https://doi.org/10.1115/1.4005300.
  • [6] D.B. Tuckerman, R.F.W. Pease, High-performance heat sinking for VLSI, IEEE Electron Device Lett. 2 (1981) 126–129. https://doi.org/10.1109/EDL.1981.25367.
  • [7] P. Bhandari, Y.K. Prajapati, Fluid flow and heat transfer behavior in distinct array of stepped micro pin fin heat sink, J. Enhanc. Heat Transf. 28 (2021) 31–61. https://doi.org/10.1615/JENHHEATTRANSF.2021037008.
  • [8] P. Bhandari, Y.K. Prajapati, Influences of tip clearance on flow and heat transfer characterstics of open type micro pin fin heat sink, Int. J. Therm. Sci. 179 (2022) 107714. https://doi.org/10.1016/j.ijthermalsci.2022.107714.
  • [9] P. Bhandari, Y.K. Prajapati, A. Uniyal, Influence of three dimensionality effects on thermal hydraulic performance for stepped micro pin fin heat sink, Meccanica. (2022). https://doi.org/10.1007/s11012-022-01534-4.
  • [10] N. Kumar, P. Singh, A.K. Redhewal, P. Bhandari, A Review on Nanofluids Applications for Heat Transfer in Micro-channels, Procedia Eng. 127 (2015) 1197–1202. https://doi.org/10.1016/j.proeng.2015.11.461.
  • [11] Y.K. Prajapati, P. Bhandari, Flow boiling instabilities in microchannels and their promising solutions – A review, Exp. Therm. Fluid Sci. 88 (2017) 576–593. https://doi.org/10.1016/j.expthermflusci.2017.07.014.
  • [12] Dongqing Li, Electrokinetics in Microfluidics, Academic Press, New York, USA, 2004.
  • [13] D. Maynes, B.. Webb, Fully developed electro-osmotic heat transfer in microchannels, Int. J. Heat Mass Transf. 46 (2003) 1359–1369. https://doi.org/10.1016/S0017-9310(02)00423-4.
  • [14] A. Husain, K.-Y. Kim, Electroosmotically enhanced microchannel heat sinks, J. Mech. Sci. Technol. 23 (2009) 814–822. https://doi.org/10.1007/s12206-009-0206-x.
  • [15] D. Maynes, B.W. Webb, Fully-Developed Thermal Transport in Combined Pressure and Electro-Osmotically Driven Flow in Microchannels, J. Heat Transfer. 125 (2003) 889–895. https://doi.org/10.1115/1.1597624.
  • [16] G.L. Morini, M. Lorenzini, S. Salvigni, M. Spiga, Thermal performance of silicon micro heat-sinks with electrokinetically-driven flows, Int. J. Therm. Sci. 45 (2006) 955–961. https://doi.org/10.1016/j.ijthermalsci.2006.01.009.
  • [17] Y. Han, Y.J. Lee, X. Zhang, Trapezoidal Microchannel Heat Sink With Pressure-Driven and Electro-Osmotic Flows for Microelectronic Cooling, IEEE Trans. Components, Packag. Manuf. Technol. 3 (2013) 1851–1858. https://doi.org/10.1109/TCPMT.2013.2272478.
  • [18] C.-K. Chen, C.-C. Cho, Electrokinetically-driven flow mixing in microchannels with wavy surface, J. Colloid Interface Sci. 312 (2007) 470–480. https://doi.org/10.1016/j.jcis.2007.03.033.
  • [19] D. Yang, Y. Liu, Numerical simulation of electroosmotic flow in microchannels with sinusoidal roughness, Colloids Surfaces A Physicochem. Eng. Asp. 328 (2008) 28–33. https://doi.org/10.1016/j.colsurfa.2008.06.029.
  • [20] D. Yang, Y. Liu, Numerical simulation of electroosmotic flow in hydrophobic microchannels, Sci. China Ser. E Technol. Sci. 52 (2009) 2460–2465. https://doi.org/10.1007/s11431-008-0300-9.
  • [21] S. Kang, Y.K. Suh, Electroosmotic flows in an electric double layer overlapped channel with rectangle-waved surface roughness, Microfluid. Nanofluidics. 7 (2009) 337–352. https://doi.org/10.1007/s10404-008-0384-3.
  • [22] H.-T. Yau, C.-C. Wang, C.-C. Cho, C.-K. Chen, A numerical investigation into electroosmotic flow in microchannels with complex wavy surfaces, Therm. Sci. 15 (2011) 87–94. https://doi.org/10.2298/TSCI11S1087Y.
  • [23] C.-C. Cho, C.-L. Chen, C.-K. Chen, Mixing enhancement of electrokinetically-driven non-Newtonian fluids in microchannel with patterned blocks, Chem. Eng. J. 191 (2012) 132–140. https://doi.org/10.1016/j.cej.2012.02.083.
  • [24] Linan Jiang, J. Mikkelsen, Jae-Mo Koo, D. Huber, Shuhuai Yao, Lian Zhang, Peng Zhou, J.G. Maveety, R. Prasher, J.G. Santiago, T.W. Kenny, K.E. Goodson, Closed-loop electroosmotic microchannel cooling system for VLSI circuits, IEEE Trans. Components Packag. Technol. 25 (2002) 347–355. https://doi.org/10.1109/TCAPT.2002.800599.
  • [25] M.M. Fakhari, S.A. Mirbozorgi, Numerical analysis of the effects of roughness on the electro-osmotic laminar flow between two parallel plates, Meccanica. 56 (2021) 1025–1045. https://doi.org/10.1007/s11012-020-01257-4.
  • [26] M. Sheikhizad Saravani, M. Kalteh, Heat transfer investigation of combined electroosmotic/pressure driven nanofluid flow in a microchannel: Effect of heterogeneous surface potential and slip boundary condition, Eur. J. Mech. - B/Fluids. 80 (2020) 13–25. https://doi.org/10.1016/j.euromechflu.2019.11.002.
  • [27] N.S. Lynn, C.S. Henry, D.S. Dandy, Microfluidic mixing via transverse electrokinetic effects in a planar microchannel, Microfluid. Nanofluidics. 5 (2008) 493–505. https://doi.org/10.1007/s10404-008-0258-8.
  • [28] T. Krishnaveni, T. Renganathan, J.R. Picardo, S. Pushpavanam, Numerical study of enhanced mixing in pressure-driven flows in microchannels using a spatially periodic electric field, Phys. Rev. E. 96 (2017) 033117. https://doi.org/10.1103/PhysRevE.96.033117.
  • [29] S. Sivasankaran, K. Narrein, Numerical investigation of two-phase laminar pulsating nanofluid flow in helical microchannel filled with a porous medium, Int. Commun. Heat Mass Transf. 75 (2016) 86–91. https://doi.org/10.1016/j.icheatmasstransfer.2016.03.016.
  • [30] T.K. Nandi, H. Chattopadhyay, Numerical investigations of simultaneously developing flow in wavy microchannels under pulsating inlet flow condition, Int. Commun. Heat Mass Transf. 47 (2013) 27–31. https://doi.org/10.1016/j.icheatmasstransfer.2013.06.008.
  • [31] T.K. Nandi, H. Chattopadhyay, Numerical investigations of developing flow and heat transfer in raccoon type microchannels under inlet pulsation, Int. Commun. Heat Mass Transf. 56 (2014) 37–41. https://doi.org/10.1016/j.icheatmasstransfer.2014.04.017.
  • [32] C.-S. Wang, T.-C. Wei, P.-Y. Shen, T.-M. Liou, Lattice Boltzmann study of flow pulsation on heat transfer augmentation in a louvered microchannel heat sink, Int. J. Heat Mass Transf. 148 (2020) 119139. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119139.
  • [33] C. Xu, S. Xu, R.D. Eticha, Experimental investigation of thermal performance for pulsating flow in a microchannel heat sink filled with PCM (paraffin/CNT composite), Energy Convers. Manag. 236 (2021) 114071. https://doi.org/10.1016/j.enconman.2021.114071.
  • [34] I. Nkurikiyimfura, Y. Wang, Z. Pan, Heat transfer enhancement by magnetic nanofluids—A review, Renew. Sustain. Energy Rev. 21 (2013) 548–561. https://doi.org/10.1016/j.rser.2012.12.039.
  • [35] S. Ganguly, S. Sarkar, T. Kumar Hota, M. Mishra, Thermally developing combined electroosmotic and pressure-driven flow of nanofluids in a microchannel under the effect of magnetic field, Chem. Eng. Sci. 126 (2015) 10–21. https://doi.org/10.1016/j.ces.2014.11.060.
  • [36] G.C. Shit, A. Mondal, A. Sinha, P.K. Kundu, Electro-osmotically driven MHD flow and heat transfer in micro-channel, Phys. A Stat. Mech. Its Appl. 449 (2016) 437–454. https://doi.org/10.1016/j.physa.2016.01.008.
  • [37] M. Sheikholeslami, H.B. Rokni, Nanofluid two phase model analysis in existence of induced magnetic field, Int. J. Heat Mass Transf. 107 (2017) 288–299. https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.130.
  • [38] Q. Zhao, H. Xu, L. Tao, Flow and heat transfer of nanofluid through a horizontal microchannel with magnetic field and interfacial electrokinetic effects, Eur. J. Mech. - B/Fluids. 80 (2020) 72–79. https://doi.org/10.1016/j.euromechflu.2019.12.003.
  • [39] C. Yang, Y. Jian, Z. Xie, F. Li, Heat transfer characteristics of magnetohydrodynamic electroosmotic flow in a rectangular microchannel, Eur. J. Mech. - B/Fluids. 74 (2019) 180–190. https://doi.org/10.1016/j.euromechflu.2018.11.015.
  • [40] P. Naphon, S. Wiriyasart, Experimental study on laminar pulsating flow and heat transfer of nanofluids in micro-fins tube with magnetic fields, Int. J. Heat Mass Transf. 118 (2018) 297–303. https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.131.
  • [41] A. Alizadeh, L. Zhang, M. Wang, Mixing enhancement of low-Reynolds electro-osmotic flows in microchannels with temperature-patterned walls, J. Colloid Interface Sci. 431 (2014) 50–63. https://doi.org/10.1016/j.jcis.2014.05.070.
  • [42] J.S. Go, Design of a microfin array heat sink using flow-induced vibration to enhance the heat transfer in the laminar flow regime, Sensors Actuators A Phys. 105 (2003) 201–210. https://doi.org/10.1016/S0924-4247(03)00101-8.
  • [43] W.M.A.A. Japar, N.A.C. Sidik, R. Saidur, Y. Asako, S. Nurul Akmal Yusof, A review of passive methods in microchannel heat sink application through advanced geometric structure and nanofluids: Current advancements and challenges, Nanotechnol. Rev. 9 (2020) 1192–1216. https://doi.org/10.1515/ntrev-2020-0094/
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cddb91c8-c532-448c-8d75-dcb5edc07e27
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.