Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
High Frequency Trading w handlu towarami pochodzenia rolniczego jako źródło dodatkowego dochodu w rolnictwie
Języki publikacji
Abstrakty
The paper verifies usefulness of the high frequency trading model developed by Marco Avellaneda and Sasha Stoikov, used in simulation of turnover with futures contract securities of one of agricultural commodities on the selected commodity stock exchange. Accuracy of provided signals of purchase and sale signals was verified on authentic quotations – the futures contract for coffee prices of the London Stock Exchange. Results of ten subsequent session days was analysed in detail. Quality of the assumed investment algorithm was determined with the use of stock exchange ratios: Information Ratio and Maximum Drawdown. A short discussion was conducted, which compared a standard investing method and the analysed model of algorithmic trading. In conclusion, all most important statements and conclusions were made, which confirmed usefulness of the HFT model developed by Marco Avellaneda and Sasha Stoikov for turnover of futures contract securities for agricultural commodities.
W pracy sprawdzono przydatność modelu szybkiego kupna i sprzedaży (High Frequency Trading) Marco Avellanedy i Sashy Stoikov'a, użytego w symulacji obrotu walorami kontraktu terminowego na towar pochodzenia rolniczego na wybranej giełdzie towarowej. Zbadano trafność podawanych sygnałów transakcji kupna i sprzedaży na autentycznych notowaniach - kontrakt terminowy na ceny kawy londyńskiej giełdy papierów wartościowych (London Stock Exchange). Szczegółowo zanalizowano wyniki dziesięciu kolejnych dni sesyjnych. Jakość przyjętego algorytmu inwestycyjnego określono za pomocą wskaźników giełdowych: Information Ratio oraz Maximum Drawdown. Przeprowadzono krótką dyskusję porównującą standardową metodę inwestowania oraz analizowany model handlu algorytmicznego. Na zakończenie zebrano najważniejsze stwierdzenia i wyciągnięto wnioski potwierdzające przydatność modelu HFT Marco Avellanedy i Sashy Stoikov'a do obrotu walorami kontraktów terminowych na towary pochodzenia rolniczego o dużej płynności oraz możliwość jego praktycznego zastosowania.
Czasopismo
Rocznik
Tom
Strony
221--231
Opis fizyczny
Bibliogr. 16 poz., tab., wykr.
Twórcy
autor
- Institute of Agricultural Engineering and Informatics, University of Agriculture in Krakow, ul. Balicka 116B, 30-149 Kraków
autor
- Institute of Agricultural Engineering and Informatics, University of Agriculture in Krakow, ul. Balicka 116B, 30-149 Kraków
autor
- Institute of Agricultural Engineering and Informatics, University of Agriculture in Krakow, ul. Balicka 116B, 30-149 Kraków
autor
- Institute of Agricultural Engineering and Informatics, University of Agriculture in Krakow, ul. Balicka 116B, 30-149 Kraków
autor
- Institute of Agricultural Engineering and Informatics, University of Agriculture in Krakow, ul. Balicka 116B, 30-149 Kraków
Bibliografia
- Aragon, G. O.; Dieckmann, S. (2011). Stock market trading activity and returns around milestones Journal of Empirical Finance, Volume 18, Issue 4, IX 2011, 570-584.
- Avellaneda, M.; Stoikov, S. (2008). High-frequency trading in a limit order book. Quantitative Finance, Vol. 8, No. 3, IV 2008, 217–224 [Adobe Reader]. Pozyskano z https://www.math.nyu.edu/faculty/avellane/HighFrequencyTrading.pdf
- Chang, P.; Liao, W.; Lin, J.; Fan. Ch. (2011). A dynamic threshold decision system for stock trading signal detection. Applied Soft Computing, Volume 11, Issue 5, VI 2011, 3998-4010.
- Chavarnakul, T.; Enke, D. (2008). Intelligent technical analysis based equivolume charting for stock trading using neural networks. Expert Systems with Applications, Volume 34, Issue 2, II 2008, 1004-1017.
- Choudhury, S.; Ghosh, S.; Bhattacharya, A.; Fernandes, K. J.; Tiwari, M. K. (2014). A real time clustering and SVM based price-volatility prediction for optimal trading strategy. Neurocomputing, Volume 131, V 2014, 419-426.
- Esfahanipour, A.; Mousavi, S. (2011). A genetic programming model to generate risk-adjusted technical trading rules in stock markets. Expert Systems with Applications, Volume 38, Issue 7, VI 2011, 8438-8445.
- Evans, C.; Pappas, K.; Xhafa, F. (2013). Utilizing artificial neural networks and genetic algorithms to build an algo-trading model for intra-day foreign exchange speculation. Mathematical and Computer Modelling, Volume 58, Issues 5–6, IX 2013, 1249-1266.
- Forda, P.; Labadie, M. (2012). High-frequency market-making with inventory constraints and directional bets. arXiv: 1206.4810v1 [q-fin.TR], VI 2012 [Adobe Reader]. Obtained from: http://www.arxiv.org/pdf/1206.4810
- Gradojevic, N., Gençay, R. (2013). Fuzzy logic, trading uncertainty and technical trading Journal of Banking & Finance, Volume 37, Issue 2, II 2013, 578-586.
- Ho, T.; Stoll, H. (1981). Optimal dealer pricing under transactions and return uncetrainty. J. Financ. Econ., 47-73.
- Kluger, B. D.; McBride, M. E. (2011). Intraday trading patterns in an intelligent autonomous agentbased stock market. Journal of Economic Behavior & Organization, Volume 79, Issue 3, VIII 2011, 226-245
- Kozhan, R.; Salmon, M. (2012). The information content of a limit order book: The case of an FX market. Journal of Financial Markets, Volume 15, Issue 1, II 2012, 1-28.
- Li, X.; Deng, Z.; Luo, J. (2009). Trading strategy design in financial investment through a turning points prediction scheme. Expert Systems with Applications, Volume 36, Issue 4, V 2009, 7818-7826.
- Mabu, S.; Hirasawa, K.; Obayashi, M.; Kuremoto, T. (2013). Enhanced decision making mechanism of rule-based genetic network programming for creating stock trading signals. Expert Systems with Applications, Volume 40, Issue 16, 15 XI 2013, 6311-6320.
- Tan, Z.; Quek, Ch.; Cheng, P. (2011). Stock trading with cycles: A financial application of ANFIS and reinforcement learning. Expert Systems with Applications, Volume 38, Issue 5, V 2011, 4741–4755.
- Zaremba, A. (2010). Giełda Podstawy Inwestowania. Wydanie II rozszerzone. Gliwice, Wydawnictwo Helion, ISBN 978-83-246-2645-8.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cdd7eae9-303a-413d-96da-f32aa9d4e476