PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comprehensive prediction of coal seam thickness by using in‑seam seismic surveys and Bayesian kriging

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Quantitative determination of the coal seam thickness distribution within the longwall panel is one of the primary works before integrated mining. In-seam seismic (ISS) surveys and interpolations are essential methods for predicting thickness. In this study, a new quantitative method that combines ISS and Bayesian kriging (BK), called ISS–BK, is proposed to determine the thickness distribution. ISS–BK consists of the following six steps. (1) The group velocity of Love waves is plotted by using the simultaneous iterative reconstruction technique under a constant frequency value. (2) An approximate quantitative relationship between the thickness and the group velocity is fitted based on sampling points of the coal seam thickness, which are measured during the process of entry development. (3) The group velocity map is translated into a primary thickness map according to the above-mentioned fitted equation. (4) By subtracting the ISS prediction result from the actual thickness at a sampling point, the residual variable is created. (5) The residual distribution is interpolated within the whole longwall panel by applying BK. The residual map establishes the interconnection between the ISS survey and BK. (6) A refined thickness distribution map can be obtained by overlapping the primary thickness map and the residual map. The application of this method to the No. 2408 longwall panel of Yuhua Coal Mine using ISS–BK showed a considerable improvement in thickness prediction accuracy over ISS. The residuals of ISS and ISS–BK mainly lie in the intervals (− 3.0, 3.0 m) and (− 1.0, 3.0 m), respectively. The accurate prediction rates [where the residual lies in the interval (0, 0.1 m)] of ISS and ISS–BK are 9.39% and 50.28%, respectively, and the effective prediction rates (where the residual is less than 1.0 m) of ISS and ISS–BK are 61.88% and 77.90%, respectively. All the above statistics reflect a considerable improvement in the ISS–BK method over the ISS method.
Czasopismo
Rocznik
Strony
825--836
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
  • China Coal Research Institute, Beijing, China
  • Xi’an Research Institute, China Coal Technology & Engineering Group Corp, Xi’an, China
  • China Coal Research Institute, Beijing, China
  • Xi’an Research Institute, China Coal Technology & Engineering Group Corp, Xi’an, China
autor
  • Xi’an Research Institute, China Coal Technology & Engineering Group Corp, Xi’an, China
autor
  • Xi’an Research Institute, China Coal Technology & Engineering Group Corp, Xi’an, China
Bibliografia
  • 1. álvarez-Fernández MI, González-Nicieza C, álvarez-Vigil AE, Herrera García G, Torno S (2009) Numerical modelling and analysis of the influence of local variation in the thickness of a coal seam on surrounding stresses: application to a practical case. Int J Coal Geol 79(4):157–166
  • 2. Cheng J, Ji G, Zhu P (2012) Resolution analysis of in-seam seismic tomographic inversion for coal thickness. J China Coal Soc 37(01):67–72
  • 3. Dresen L, Bochum R (1995) Seismic coal exploration, Part B. In-seam seismics. RuhrUniversität Bochum, Institut für Geophysik, Bochum
  • 4. Du W, Peng S (2010) Coal seam thickness prediction with geostatistics. Chin J Rock Mech Eng 29(s1):2762–2767
  • 5. Dziewonski AM, Bloch S, Landisman M (1969) A technique for the analysis of transient seismic signals. Bull Seismol Soc Am 59:427–444
  • 6. Gersztenkorn A, Scales JA (1988) Smoothing seismic tomograms with alpha-trimmed means. Geophys J 92(1):67–72
  • 7. Hu Z, Zhang P, Xu G (2018) Dispersion features of transmitted channel waves and inversion of coal seam thickness. Acta Geophys 66(5):1001–1009
  • 8. Omre H (1987) Bayesian kriging: merging observations and qualified guesses in kriging. Math Geol 19(1):25–39
  • 9. RäDer D, Schott W, Dresen L, RüTER H (1985) Calculation of dispersion curves and amplitude-depth distributions of love channel waves in horizontally-layered media. Geophys Prospect 33(6):800–816
  • 10. Sahalos JN, Kyriacou G (1985) On the electromagnetic detection of the thickness of a coal or lignite seam with slate backing. J Franklin Inst 320(2):83–101
  • 11. Schott W, Waclawik P (2015) On the quantitative determination of coal seam thickness by means of in-seam seismic surveys. Can Geotech J 52:1496–1504
  • 12. Slavinskii VM, Shilov VI, Chernyak ZA (1985) The output function and calibration curve for a natural-radioactivity coal-seam thickness gauge. Meas Tech 28(8):704–706
  • 13. Sun J, Chen B (2017) Coal-rock recognition approach based on CLBP and support vector guided dictionary learning. J China Coal Soc 42(12):3338–3348
  • 14. Wang B, Liu S, Jiang Z, Huang L (2011) Advanced forecast of coal seam thickness variation by integrated geophysical method in the laneway. In: First international symposium on mine safety science and engineering
  • 15. Wang X, Li Y, Chen T et al (2017) Quantitative thickness prediction of tectonically deformed coal using extreme learning machine and principal component analysis: a case study. Comput Geosci 101(C):38–47
  • 16. Yuan L (2017) Scientific conception of precision coal mining. J China Coal Soc 42(1):1–7
  • 17. Zou G, Xu Z, Peng S, Fan F (2018) Analysis of coal seam thickness and seismic wave amplitude: a wedge model. J Appl Geophys 148:245–255
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cdd58062-67e6-4126-b17b-fce44ca415c9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.