PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Validation of the generalized model of two-phase thermosyphon loop based on experimental measurements of volumetric flow rate

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The current paper presents the experimental validation of the generalized model of the two-phase thermosyphon loop. The generalized model is based on mass, momentum, and energy balances in the evaporators, rising tube, condensers and the falling tube. The theoretical analysis and the experimental data have been obtained for a new designed variant. The variant refers to a thermosyphon loop with both minichannels and conventional tubes. The thermosyphon loop consists of an evaporator on the lower vertical section and a condenser on the upper vertical section. The one-dimensional homogeneous and separated two-phase flow models were used in calculations. The latest minichannel heat transfer correlations available in literature were applied. A numerical analysis of the volumetric flow rate in the steady-state has been done. The experiment was conducted on a specially designed test apparatus. Ultrapure water was used as a working fluid. The results show that the theoretical predictions are in good agreement with the measured volumetric flow rate at steady-state.
Rocznik
Strony
109--138
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wz.
Twórcy
  • Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
Bibliografia
  • [1] Agostini F., Gradinger T., Cottet D.: Compact gravity driven and capil larysized thermosyphon loop for power electronics cooling. J. Thermal Sci. Eng. Appl. 6(2014), 3, 031003-1.
  • [2] Bieliński H., Mikielewicz J.: Computer cooling using a two phase minichannel thermosyphon loop heated from horizontal and vertical sides and cooled from vertical side. Arch. Thermodyn. 31(2010), 4, (2010), 51–59.
  • [3] Khodabandeh R.: Heat transfer in the evaporator of an advanced two-phase thermosyphon loop. Int. J. Refrig. 28(2005), 2, 190–202.
  • [4] Khodabandeh R.: Pressure drop in riser and evaporator in an advanced two-phase thermosyphon loop. Int. J. Refrig. 28(2005), 725–734.
  • [5] Kumar K.K., Gopal M.R.: Experimental studies on CO2 based single and twophase natural circulation loops. Appl. Therm. Eng. 31(2011), 16, 3437–3443.
  • [6] Bieliński H., Mikielewicz J.: Natural convection of thermal diode. Arch. Thermodyn. 16(1995), 3-4, 177–196.
  • [7] Bieliński H., Mikielewicz J.: New solutions of thermal diode with natural laminar circulation. Arch. Thermodyn. 22(2001), 1-2, 89–106.
  • [8] Bieliński H., Mikielewicz J.: The effect of geometrical parameters on the mass flux in a two phase thermosyphon loop heated from one side. Arch. Thermodyn. 29(2004), 1, 59–68.
  • [9] Bieliński H., Mikielewicz J.: A two phase thermosyphon loop with minichannels heated from vertical side and cooled from horizontal side. Chem. Process Eng. 31(2010), 4, 535–551.
  • [10] Bieliński H., Mikielewicz J.: Natural circulation in single and two phase thermosyphon loop with conventional tubes and minichannels. In: ’Heat Transfer. Mathematical Modeling, Numerical Methods and Information Technology’ (A. Belmiloudi, Ed.), InTech , 2011, 475–496.
  • [11] Bieliński H.: New variants to theoretical investigations of thermosyphon loop. In: ’Two Phase Flow, Phase Change And Numerical Modeling’ (A. Ahsan, Ed.) InTech (ISBN 978-953-307-584-6), Chap. 16, 2011, 365–386.
  • [12] Bieliński H., Mikielewicz J., Mikielewicz, D.: A closed loop thermosyphon with conventional or minichannel based condenser and evaporator. 16th Int. Heat Pipe Conf. (16th IHPC), Lyon, May 20-24, (2012).
  • [13] Lamaison N., Ong C.L., Marcinichen J.B., Thome J.R.: Two-phase minithermosyphon electronics cooling: Dynamic modeling, experimental validation and application to 2U servers. Appl. Therm. Eng. 110(2017), 481–494.
  • [14] Archana V., Vaidya A.M., Vijayan P.K.: Flow transients in supercritical CO2 natural circulation loop. Procedia Eng. 127(2015). 1189–1196.
  • [15] Lemos W.L., Faccini H.L.H., Sul J.: Flow Visualization Of Bubble Behavior Under Two-Phase Natural Circulation Flow Conditions Using High Speed Digital Camera. 2013 Int. Nuclear Atlantic Conf. – INAC 2013, Recife, PE, November 24–29, 2013, Associao Brasileira De Energia Nuclear – ABEN.
  • [16] Vijayan P.K., Nayak A. K., Saha D., and Gartia M.R.: Effect of loop diameter on the steady state and stability behaviour of single-phase and two-phase natural circulation loops. Hindawi Publ. Corp. Sci. Technol. of Nuclear Installations, 2008, ID 672704, 17.
  • [17] Garrity P.T., Klausner J.F., Mei R.: Instability phenomena in a two-phase microchannel thermosyphon. Int. J. Heat Mass Tran. 52(2009), 7–8, 1701–1708.
  • [18] Franco A., Filippeschi S.: Closed loop two-phase thermosyphon of small dimensions: A Review of the experimental results. Microgravity Sci. Tec. 24(2012), 3, 165–179.
  • [19] Franco A., Filippeschi S.: Experimental analysis of closed loop two phase thermosyphon (CLTPT) for energy systems. Exp. Therm. Fluid Sci. 51(2013), 302–311.
  • [20] Chen L., Deng Bi-Li, Zhang Xin-Rong: Experimental study of trans-critical and supercritical CO2 natural circulation flow in a closed loop. Appl. Thermal Eng. 59(2013), 1–2, 1–13.
  • [21] Dobson R.T., Ruppersberg J.C.: Flow and heat transfer in a closed loop thermosyphon. Part I –Theoretical simulation. J.Energ. South. Africa 18(2007), 4, 32–40.
  • [22] Dobson R.T., Ruppersberg J.C.: Flow and heat transfer in a closed loop thermosyphon Part II – experimental simulation. J. Energ. South. Africa 18(2007), 3, 41–48.
  • [23] Agostini F., Ferreira E.: Non intrusive measurement of the mass flow rate inside a closed loop two-phase thermosyphon. In: Proc. 8th Minsk Int. Seminar ‘Heat Pipes, Heat Pumps, Refrigerators, Power Sources’, Minsk, Belarus, Sept. 12–15, 2011.
  • [24] Cieśliński J.T., Fiuk A.: Heat transfer characteristics of a two-phase thermosyphon heat exchanger. Appl. Thermal Eng. 51(2013), 1–2, 112–118.
  • [25] Cieśliński J.T.: Effect of nanofluid concentration on two-phase thermosyphon heat exchanger performance. Arch. Thermodyn. 37(2016), 2, 23–40, DOI: 10.1515/aoter-2016-0011.
  • [26] Madejski J., Mikielewicz J.: Liquid fin a new device for heat transfer equipment. Int. J. Heat Mass Tran. 14(1971), 357–363.
  • [27] Won Tae Kim, Kwang Soo Kim, Young Lee: Design of a two-phase loop thermosyphon for telecommunications system (II). Analysis and simulation. KSME Int. J. 12(1998), 5, 942–955.
  • [28] Mertol A., Greif R.: A review of natural circulation loops. In Natural Convection: Fundamentals and Applications (1985), 1033–1071.
  • [29] Mikielewicz D., Szymański P., Błauciak K., Wajs J., Mikielewicz J., Ihnatowicz E.: The new concept of capil lary forces aided evaporator for application in domestic organic Rankine cycle. Heat Pipe Sci. Technol., Int. J. 1(2010), 4, 359–373.
  • [30] Rao N.M., Sekhar Ch., Maiti B., Das P.D.: Steady-state performance of a two-phase natural circulation loop. Int. Commun. Heat Mass Trans. 33 (2006), 1042–1052.
  • [31] Hartenstine J.R., Bonner R.W., Montgomery J. R., Semenic S.: LOOP Thermosyphon design for cooling of large area, high heat flux sources. In: Proc. IPACK2007 ASME InterPACK ’07, July 8-12, 2007, Vancouver, British Columbia, Canada, IPACK2007-33993.
  • [32] Ghiaasiaan S.M.: Two-Phase Flow, Boiling and Condensation in Conventional and Miniature Systems.Cambridge University Press, 2008, ISBN 978-0-521-88276-7.
  • [33] El-Hajal J., Thome J.R., Cavallini A.: Condensation in horizontal tubes. Part 1: Two-phase flow pattern map. Int. J. Heat Mass Tran.46(2003), 18, 3349–3363.
  • [34] Tran T.N., Chyu M.C., Wambsganss M.W., France D.M.: Two-phase pressure drop of refrigerants during flow boiling in small channels: An experimental investigations and correlation development. Int. J. Multiphase Flow, 26(2000), 11, 1739–1754.
  • [35] Zuber N., Findlay J.A.: Average volumetric concentration in two-phase flow systems. J. Heat Trans. 87(1965), 4, 453–468.
  • [36] Müller-Steinhagen H., Heck K.: A simple friction pressure drop correlation for two-phase flow in pipes. Chem. Eng. Processes 20(1986), 6, 297–308.
  • [37] Hewitt G.F.: Two-phase flow through orifices, valves, bends and other singularities. In: Proc. 9th Lecture Series on Two-Phase Flow, Norwegian Institute of Technology, Trondheim (1984), 163.
  • [38] Chisholm D.: Two-phase flow in bends. Int. J. Multiphase Flow 6(1979), 4, 363–367.
  • [39] Idelchik I.E.: Handbook of Hydraulic Resistance. 2nd Edn. New York: Hemisphere, 1986.
  • [40] ISO GUM EA-4/02 Evaluation of the Uncertainty of Measurement in Calibration., EA Laboratory Committee.
Uwagi
EN
The work presented in the paper was funded from the National Science Centre Poland: project No: NCN-UMO-2011/01/B/ST8/06856.
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cdd48ec2-c5ad-4e7b-8d20-7280bf109b17
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.