PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of facet joint orientation in the lumbar spine segment on the intervertebral disc bulge

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Due to the growing percentage of degenerative spinal diseases among the population, it is extremely important to assess how the orientation of the articular facets affects the changes in the intervertebral disc. Therefore, the aim of this study was to assess the effect of the orientation of the articular facets on the changes occurring in individual layers of the annulus fibrosus of the intervertebral disc under the influence of the load causing extension. Methods: Numerical simulations were performed for five configurations of the functional spinal units: physiological, with moderate tropism, severe tropism, and segments in which non-physiological orientation was modelled of both processes with different ranges. Results: It can be concluded that severe tropism causes more significant changes in intervertebral disc bulging on the physiological side of the orientation of the articular facets. Furthermore, the value of stress on articular processes increases tenfold on the side of severe tropism compared to the physiological facet joint orientation. Conclusion: Facet joint orientation plays an important role in the transfer of loads by the spine and the posterior column provides important support for the spine during extension.
Rocznik
Strony
15--24
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Wrocław, Poland
  • Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Wrocław, Poland
Bibliografia
  • [1] ADAMS M.A., MCNALLY D.S., DOLAN P., Stress distributions inside intervertebral discs. The effects of age and degeneration, J. Bone Joint Surg. Br., 1996, 76 (6), 965–972, DOI: 10.1302/0301-620x78b6.1287.
  • [2] BERRY J.L., MORAN J.M., BERG W.S., STEFFEE A.D., A morphometric study of human lumbar and selected thoracic vertebrae, Spine (Phila, Pa 1976), 1987, 12 (4), 362–367, DOI: 10.1097/00007632-198705000-00010.
  • [3] DENOZIÈRE G., KU D.N., Biomechanical comparison between fusion of two vertebrae and implantation of an artificial intervertebral disc, J. Biomech., 2006, 39 (4), 766–775, DOI: 10.1016/j.jbiomech.2004.07.039.
  • [4] DO D.H., TAGHAVI C.E., FONG W., KONG M.H., MORISHITA Y., WANG J.C., The relationship between degree of facet tropism and amount of dynamic disc bulge in lumbar spine of patients symptomatic for low back pain, Eur. Spine J., 2011, 20, 71–78, DOI: 10.1007/s00586-010-1558-8.
  • [5] FARFAN H.F., SULLIVAN J.D., The relation of facet orientation to intervertebral disc failure, Can. J. Surg., 1967, 10 (2), 179–185.
  • [6] HEUER F., SCHMIDT H., WILKE H.J., The relation between intervertebral disc bulging and annular fiber associated strains for simple and complex loading, J. Biomech., 2008, 41 (5), 1086–1094, DOI: 10.1016/j.jbiomech.2007.11.019.
  • [7] KALICHMAN L., SURI P., GUERMAZI A., LI L., HUNTER D.J., Facet orientation and tropism, associations with facet joint osteoarthritis and degenerative spondylolisthesis, Spine, 2009, 34 (16), E579, DOI: 10.1097/BRS.0b013e3181aa2acb.
  • [8] KARACAN I., AYDIN T., SAHIN Z., CIDEM M., KOYUNCU H., AKTAS I., ULUDAG M., Facet angles in lumbar disc herniation, their relation to anthropometric features, Spine, 2004, 29 (10), 1132–1136, DOI: 10.1097/00007632-200405150-00016.
  • [9] KIM H.J., TAK KANG K., CHANG B.S., LEE CH.K., KIM J.W. et al., Biomechanical analysis of fusion segment rigidity upon stress at both the fusion and adjacent segments – a comparison between unilateral and bilateral pedicle screw fixation, Yonsei Med. J., 2014, 55, 1386–1394, DOI: 10.3349/ymj.2014.55.5.1386.
  • [10] KONG M.H., HE W., TSAI Y.D., CHEN N.F., KEOROCHANA G., DO D.H. et al., Relationship of facet tropism with degeneration and stability of functional spinal unit, Yonsei Med. J., 2009, 5, 624–629, DOI: 10.3349/ymj.2009.50.5.624.
  • [11] LI Q.Y., KIM H.J., SON J., KANG K.T., CHANG B.S., LEE C.K., YEOM J.S., Biomechanical analysis of lumbar decompression surgery in relation to degenerative changes in the lumbar spine– validated finite element analysis, Comput. Biol. Med., 2017, 89, 512–519, DOI: 10.1016/j.compbiomed.2017.09.003.
  • [12] LIU X., HUANG Z., ZHOU R., ZHU Q., JI W., LONG Y., WANG J., The Effects of Orientation of Lumbar Facet Joints on the Facet Joint Contact Forces. An In Vitro Biomechanical Study, Spine, 2018, 43 (4), E216–E220, DOI: 10.1097/ BRS.0000000000002290.
  • [13] LÓPEZ E., ELENA I., HERRERA A., MATEO J., LOBO-ESCOLAR A. et al., Probability of osteoporotic vertebral fractures assessment based on DXA measurements and finite element simulation, Adv. Biosci. Biotechnol., 2014, 5, 527–545, DOI: 10.4236/ abb.2014.56063.
  • [14] LOTZ J.C., FIELDS A.J., LIEBENBERG E.C., The role of the vertebral endplate in low back pain, Global Spine J., 2013, 3 (3), 153–164, DOI: 10.1055/s-0033-1347298.
  • [15] MASHARAWI Y., ROTHSCHILD B., DAR G., PELEG S., ROBINSON D., BEEN E., HERSHKOVITZ I., Facet orientation in the thoracolumbar spine, three-dimensional anatomic and biomechanical analysis, Spine, 2004, 29 (16), 1755–1763, DOI: 10.1097/01.BRS.0000134575.04084.EF.
  • [16] MICHNIK R., ZADOŃ H. et al., The effect of the pelvis position in the sagittal plane on loads in the human musculoskeletal system, Acta Bioeng. Biomech., 2020, 22 (3), 33–42, DOI: 10.37190/ABB-01606-2020-02.
  • [17] PANJABI M.M., BRAND R.A., WHITE A.A., Mechanical properties of the human thoracic spine as shown by three-dimensional load-displacement curves, J. Bone Joint Surg. Am., 1976, 58 (5), 642–652, DOI: 10.2106/00004623-197658050-00011.
  • [18] PANJABI M.M., OXLAND T., TAKATA K., GOEL V., DURANCEAU J., KRAG M., Articular facets of the human spine. Quantitative threedimensional anatomy, Spine (Phila, Pa 1976), 1993, 18 (10), 1298–1310, DOI: 10.1097/ 00007632-199308000-00009.
  • [19] PICHAISAK W., CHOTIYARNWONG C., CHOTIYARNWONG P., Facet joint orientation and tropism in lumbar degenerative disc disease and spondylolisthesis, J. Med. Assoc. Thai., 2015, 98 (4), 373–379, DOI: 10.1055/s-0034-1376586.
  • [20] ROHLMANN A., ZANDER T., SCHMIDT H., WILKE H.J., BERGMANN G., Analysis of the influence of disc degeneration on the mechanical behavior of a lumbar motion segment using the finite element method, J. Biomech., 2006, 39 (13), 2484–2490, DOI: 10.1016/j.jbiomech.2005.07.026.
  • [21] RONG X., LIU Z., WANG B., PAN X., LIU H., Relationship between facet tropism and facet joint degeneration in the sub-axial cervical spine, BMC Musculoskeletal Disorders, 2017, 18 (1), 86, DOI: 10.1186/s12891-017-1448-x.
  • [22] SAMARTZIS D., CHEUNG J.P., RAJASEKARAN S., KAWAGUCHI Y., ACHARYA S., KAWAKAMI M. et al., Critical values of facet joint angulation and tropism in the development of lumbar degenerative spondylolisthesis: an international, large-scale multicenter study by the AO Spine Asia Pacific Research Collaboration Consortium, Global Spine J., 2016, 6, 414–421, DOI: 10.1055/s-0035-1564417.
  • [23] SHIRAZI-ADL A., DROUIN G., Load-bearing role of facets in a lumbar segment under sagittal plane loadings, J. Biomech., 1987, 20 (6), 601–613, DOI: 10.1016/0021-9290(87)90281-8.
  • [24] SZKODA K., PEZOWICZ C.A., Finite element analysis of fixation system influence on the thoracolumbar spine stability, Appl. Mech. Mater., 2016, 821, 685–692, DOI: 10.4028/www.scientific.net/AMM.821.685.
  • [25] SZKODA-POLISZUK K., ŻAK M., PEZOWICZ C., Finite element analysis of the influence of three-joint spinal complex on the change of the intervertebral disc bulge and height, Int. J. Numer. Meth. Biomed. Engng., 2018, 34 (9), e3107, DOI: 10.1002/cnm.3107.
  • [26] WEISHAUPT D., ZANETTI M., BOOS N. et al., MR imaging and CT in osteoarthritis of the lumbar facet joints, Skeletal Radiol., 1999, 28, 215–219, DOI: 10.1007/s002560050503.
  • [27] XU M., YANG J., LIEBERMAN I.H., HADDAS R., Lumbar spine finite element model for healthy subjects: development and validation, Comput. Methods Biomech. Biomed. Eng., 2017, 20 (1), 1–15, DOI: 10.1080/10255842.2016.1193596.
  • [28] ZAHAF S., HABIB H., MANSOURI B., BELARBI A., AZARI Z., The effect of the eccentric loading on the components of the spine, GJRE, 2016, 4 (1), 6–22, DOI: 10.15761/HMO.1000110.
  • [29] ZAHARI S.N., LATIF M.J.A., RAHIM N.R.A., KADIR M.R.A., KAMARUL T., The effects of physiological biomechanical loading on intradiscal pressure and annulus stress in lumbar spine: a finite element analysis, J. Healthc. Eng., 2017, 9618940, DOI: 10.1155/2017/9618940.
  • [30] ŻAK M., Effect of support on mechanical properties of the intervertebral disc in long-term compression testing, J. Theor. Appl. Mech., 2014, 52 (3), 677–686.
  • [31] ZANDER T., ROHLMANN A., BERGMANN G., Influence of different artificial disc kinematics on spine biomechanics, Clin. Biomech., 2009, 24 (2), 135–142, DOI: 10.1016/j.clinbiomech.2008.11.008.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cdcc925d-c42b-41a5-a3e7-f71cef833652
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.