Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents numerical methods for solving the one-dimensional fractional reaction -diffusion equation with the fractional Caputo derivative. The proposed methods are based on transformation of the fractional differential equation to an equivalent form of a integro -differential equation. The paper proposes an improvement of the existing implicit method, and a new explicit method. Stability and convergence tests of the methods were also conducted.
Czasopismo
Rocznik
Tom
Strony
365--376
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
- Silesian University of Technology, Department of Mathematics Applications and Methods for Artificial Intelligence, Poland
Bibliografia
- 1. Błasik M., 2021, The implicit numerical method for the one-dimensional anomalous subdiffusion equation with a nonlinear source term, Bulletin of the Polish Academy of Sciences. Technical Sciences, 69, e138240.
- 2. Coronel-Escamilla A., Gómez-Aguilar J.F.,Torres L., Escobar-Jimenéz R.F., 2018, A numerical solution for a variable-order reaction-diffusion model by using fractional derivatives with non-local and non-singular kernel, Physica A, 491, 406-424.
- 3. Diethelm K., 2010, The Analysis of Fractional Differential Equations, Springer-Verlag, Berlin.
- 4. Gu X.M., Sun H.W., Zhao Y.L., Zheng X., 2021, An implicit difference scheme for time-fractional diffusion equations with a time-invariant type variable order, Applied Mathematics Letters, 120, 107270.
- 5. Haq S.., Ali I., Sooppy Nisar K., 2021, A computational study of two-dimensional reaction-diffusion Brusselator system with applications in chemical processes, Alexandria Engineering Journal, 60, 4381-4392.
- 6. Humphries N.E., Queiroz N., Dyer J.R.M., Pade N.G., Musyl M.K. et al., 2010, Environmental context explains Lévy and Brownian movement patterns of marine predators, Nature, 465, 1066-1069.
- 7. Kilbas A.A., Srivastava H.M., Trujillo J.J., 2006, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam.
- 8. Kosztołowicz T., Dworecki K., Mrówczyński S., 2005a, How to measure subdiffusion parameters, Physical Review Letters, 94, 170602.
- 9. Kosztołowicz T., Dworecki K., Mrówczyński S., 2005b, Measuring subdiffusion parameters, Physical Review E, 71, 041105.
- 10. Liu Y., Du Y., Li H., Li J., He S., 2015, A two-grid mixed finite element method for a nonlinear fourth-order reaction-diffusion problem with time-fractional derivative, Computers and Mathematics with Applications, 70, 2474-2492.
- 11. Metzler R., Klafter J., 2000, The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Physics Reports, 339, 1-77.
- 12. Metzler R., Klafter J., 2004, The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics, Journal of Physics A: Mathematical and General, 37, 161-208.
- 13. Owolabi K.M., Atangana A., Akgul A., 2020, Modelling and analysis of fractal-fractional partial differential equations: Application to reaction-diffusion model, Alexandria Engineering Journal, 59, 2477-2490.
- 14. Podlubny I., 1999, Fractional Differential Equations, Academic Press, San Diego.
- 15. Pradip R., Prasad Goura V.M.K., 2023, An efficient numerical scheme and its stability analysis for a time-fractional reaction diffusion model, Journal of Computational and Applied Mathematics, 422, 114918.
- 16. Saad K.M., Gómez-Aguilar J.F., 2018, Analysis of reaction-diffusion system via a new fractional derivative with non-singular kernel, Physica A, 509, 703-716.
- 17. Sandip M., Srinivasan N., 2023, Analytical and numerical solutions of time-fractional advection-diffusion-reaction equation, Applied Numerical Mathematics, 185, 549-570.
- 18. Saxena R.K., Mathai A.M., Haubold H.J., 2015, Computational solutions of unified fractional reaction-diffusion equations with composite fractional time derivative, Communications in Nonlinear Science and Numerical Simulation, 27, 1-11.
- 19. Solomon T.H., Weeks E.R., Swinney H.L., 1993, Observations of anomalous diffusion and Lévy flights in a 2-dimensional rotating flow, Physical Review Letters, 71, 3975-3979.
- 20. Weeks E.R., Urbach J.S., Swinney L., 1996, Anomalous diffusion in asymmetric random walks with a quasi-geostrophic flow example, Physica D: Nonlinear Phenomena, 97, 291-310.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cdcb9558-9b3d-427e-aa2d-612b8d6b66cb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.