Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this work, two collectors sodium oleate (NaOL) and benzohydroxamic acid (BHA) were used to study the synergic effect in wolframite flotation. The flotation behaviour of these collectors was investigated at various NaOL:BHA ratios. Results show that the mixtures of NaOL with BHA of different ratios result in large improvements in the recovery of wolframite and the 9:1 NaOL:BHA ratio of collector mixture produced the highest wolframite recovery. The amount of NaOL and BHA adsorbed on wolframite was measured for these various reagent mixtures. Compared with pure NaOL, the addition of a certain proportion of BHA is beneficial for NaOL adsorption. Molecular dynamics simulations indicate the formation of HOL–HA (oleic acid–benzohydroxamic acid) complex can take place spontaneously in NaOL–BHA system. Additionally, HOL–HA complex interact with the huebnerite (MnWO4) surface more easily than NaOL–HOL (the highest surface active composition in sodium oleate) and the addition of BHA enable the H of carboxyl group in HOL to generate hydrogen bonds with O atoms of huebnerite surface, resulting in a stronger affinity of mixed surfactants. These results reveal that in a binary NaOL–BHA system, the BHA can encourage greater adsorption of the NaOL.
Słowa kluczowe
Rocznik
Tom
Strony
82--93
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
- School of Mineral Processing and Bioengineering, Central South University, Changsha 410083, PR China
- Guangzhou Research Institute of Non-ferrous Metals, Guangzhou 510651, PR China
autor
- School of Mineral Processing and Bioengineering, Central South University, Changsha 410083, PR China
- Guangzhou Research Institute of Non-ferrous Metals, Guangzhou 510651, PR China
autor
- Guangzhou Research Institute of Non-ferrous Metals, Guangzhou 510651, PR China
autor
- School of Mineral Processing and Bioengineering, Central South University, Changsha 410083, PR China
- Guangzhou Research Institute of Non-ferrous Metals, Guangzhou 510651, PR China
Bibliografia
- ANANTHPADMANABHAN K., SOMASUNDARAN P., HEALY T.W., 1979. Chemistry of oleate and amine solutions in relation to flotation. Trans. AIME, 266, 2003-2009.
- ANTHONY J.W., BIDEAUX R.A., BLADH K.W., NICHOLS M.C., 2003. Handbook of Mineralogy. Mineral Data Publishing.
- BLACKBURN W.H., DENNEN W.H., 1988. Principles Of Mineralogy.
- CASEWIT C.J., COLWELL K.S., RAPPE A.K., 1992. Application of a universal force-field to organic-molecules. J. Am. Chem. Soc., 114(25), 10035-10046.
- GAO Y.D., QIU X.Y., ZHONG C.G., FENG Q.M., 2012. Property and surface chemistry of hydroxamic acids using as collectors in tungsten minerals flotation. China Tungsten Industry, 27(2), 10-14.
- HU Y.H., WANG D.Z., XU Z.H., 1997. A study of interactions and flotation of wolframite with octyl hydroxamate. Minerals Engineering, 10(6), 623-633.
- KLEIN C., GELLER R., 1974. A study of the mixed system (Fex, Mn1-x)WO4 using neutron diffraction and mossbauer spectroscopy. Le Journal de Physique Colloques, 35(C6), C6-589-C586-593.
- LUO L., MIYAZAKI T., SHIBAYAMA A., YEN W., FUJITA T., 2003. A novel process for recovery of tungsten and vanadium from a leach solution of tungsten alloy scrap. Minerals Engineering, 16(7), 665-670.
- MCLAREN D., 1943. Flotation of tungsten ores. Canadian Mining Journal, 64, 8-13.
- MEN NDEZ C., BARONE V., BOTTO I., TAVANI E., 2007. Physicochemical characterization of the chlorination of natural wolframites with chlorine and sulphur dioxide. Minerals Engineering, 20(14), 1278-1284.
- NIKJOO H., O'NEILL P., WILSON W., GOODHEAD D., 2001. Computational approach for determining the spectrum of DNA damage induced by ionizing radiation. Radiation research, 156(5), 577-583.
- RAI B., SATHISH P., TANWAR J., PRADIP, MOON K.S., FUERSTENAU D.W., 2011. A molecular dynamics study of the interaction of oleate and dodecylammonium chloride surfactants with complex aluminosilicate minerals. Journal of Colloid and Interface Science, 362(2), 510-516.
- RAPPE A.K., COLWELL K.S., CASEWIT C.J., 1993. Application of a universal force-field to metal-complexes. Inorg. Chem., 32(16), 3438-3450.
- SLEIGHT A., 1972. Accurate cell dimensions for ABO4 molybdates and tungstates. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 28(10), 2899-2902.
- WANG D., HU Y., 1988. Solution chemistry of flotation. Hunan Science and Technology Press, Beijing, China, 235-238.
- WANG D.Z., HU Y.H., HU W.B., 1986. Flotation behavior of wolframite with different components. Journal of Central-south Institute of Mining and Metallurgy, (4), 40-45.
- WANG D.Z., LIU G.Q., HU Y.H., 1984. A study of wolframite flotation with the addition of chelating agents and neutral oil. Nonferrous Metals, 36(2), 41-46.
- WANG J.Z., YIN W.Z., LIU M.B., WANG Y.L., ZHONG W.X., 2013. Quantitative research of synergistic effects of combined flotation reagents. Metal Mine, (443), 62-66.
- WANG L., HU Y.H., SUN W., SUN Y.S., 2015. Molecular dynamics simulation study of the interaction of mixed cationic/anionic surfactants with muscovite. Applied Surface Science, 327, 364-370.
- WEITZEL H., 1976. Kristallstrukturverfeinerung von wolframiten und columbiten. Zeitschrift für Kristallographie-Crystalline Materials, 144(1-6), 238-258.
- XIA Q.B., LI Z., QIU X.Y., DAI Z.L., 2004. Quantum chemical study on benzyhydroximic acid flotation agent. Mining and Metallurgical Engineering, 24(1), 30-33.
- XU Y., LIU Y. L., GAO S., JIANG Z.-W., SU D., LIU G.-S., 2014. Monolayer adsorption of dodecylamine surfactants at the mica/water interface. Chemical Engineering Science, 114, 58-69.
- XU Z., HU Y., LI Y., 1998. Electrokinetics and wettability of huebnerite and ferberite. Journal of colloid and interface science, 198(2), 209-215.
- ZHANG R., SOMASUNDARAN P., 2006. Advances in adsorption of surfactants and their mixtures at solid/solution interfaces. Adv. Colloid Interface Sci., 123, 213-229.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cdc8f032-37b3-43b9-b152-1fbd45289e44