PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

3D CFD fluid flow and thermal analyses of a new design of plate heat exchanger

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a Computational Fluid Dynamics (CFD) numerical study for a new design of a plate heat exchanger with two different flow patterns. The impact of geometric characteristics of the two studied geometries of exchanger plates on the intensification process of heat transfer was considered. The velocity, temperature and pressure distributions along the heat exchanger were examined. The CFD results were validated against experimental data and a good agreement was achieved. The results revealed that geometrical arrangement of the plates strongly influence the fluid flow. An increase in the Reynolds number led to lowering the friction factor value and increasing the pressure drop. The configuration II of the plate heat exchanger resulted in lower outlet hot fluid temperature in comparison with the configuration I, which means improvement of heat transfer.
Rocznik
Strony
17--26
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
  • West Pomeranian University of Technology, Szczecin, Institute of Chemical Engineering and Environmental Protection Processes, Faculty of Chemical Technology and Engineering, al. Piastow 42, 71-065 Szczecin, Poland
autor
  • West Pomeranian University of Technology, Szczecin, Institute of Chemical Engineering and Environmental Protection Processes, Faculty of Chemical Technology and Engineering, al. Piastow 42, 71-065 Szczecin, Poland
Bibliografia
  • 1. Khan, T.S., Khan, M.S., Chyu, M.C. & Ayub, Z.H. (2010). Experimental investigation of single phase convective heat transfer coefficient in a corrugated plate heat exchanger for multiple plate configurations, Appl. Ther. Engine. 30, 1058-1065. DOI: 10.1016/j.applthermaleng.2010.01.021.
  • 2. Gherasim, I., Taws, M., Galanis, N. & Nguyen, C.T. (2011). Heat transfer and fluid flow in a plate heat exchanger part I. Experimental investigation. Inter. J. Ther. Sci. 50, 1492-1498. DOI: 10.1016/j.ijthermalsci.2011.03.018.
  • 3. Kraus, A.D., Aziz, A. & Welty, J. (2007). Extended surface heat transfer. John Wiley & Sons, Inc. DOI: 10.1002/978047017582.
  • 4. Abu-Khader, M.M. (2012). Plate heat exchangers: recent advances. Renew. Sustain. Ener. Rev. 16, 1883-1891. DOI: 10.1016/j.rser.2012.01.009.
  • 5. Arie, M.A., Shooshtari, A.H., Dessiatoun, S.V., Al-Hajri, E. & Ohadi, M.M. (2015). Numerical modeling and thermal optimization of a single phase flow manifold microchannel plate heat exchanger, Inter. J. Heat Mass Trans. 81, 478-489. DOI: 10.1016/j.ijheatmasstransfer.2014.10.022.
  • 6. Goodarzi, M. & Nouri, E. (2016). A new double-pass parallel-plate heat exchanger with better wall temperature uniformity under uniform heat flux. Inter. J. Ther. Sci. 102, 137-144. DOI: 10.1016/j.ijthermalsci.2015.11.012.
  • 7. Kim, G.W., Lim, H.M. & Rhee, G.H. (2016). Numerical studies of heat transfer enhancement by cross-cut flow control in wavy fin heat exchanger, Inter. J. Heat Mass Trans. 96, 110-117. DOI: 10.1016/j.ijheatmasstransfer.2016.01.023.
  • 8. Yaici, W., Ghorab, M. & Entchev, E. (2014). 3D CFD analysis of the effect of inlet air flow maldistribution on the fluid flow and heat transfer performances of plate-fin-andtube laminar, heat exchangers, Inter. J. Heat Mass Trans. 74, 490-500. DOI: 10.1016/j.ijheatmasstransfer.2014.03.034.
  • 9. Vafajoo, L., Moradifar, K., Hosseini, S.M. & Salman, B.H. (2016). Mathematical modelling of turbulent flow for flue gas-air Chevron type plate heat exchangers. Inter. J. Heat Mass Trans. 97, 596-602. DOI: 10.1016/j.ijheatmasstransfer.2016.02.035.
  • 10. Shah, R.K. & Sekulic, D.P. (2007). Fundamentals of heat exchanger design, John & Sons, Inc., ISBN: 0-471-32171-0.
  • 11. Wakui, T. & Yokoyama, R. (2008). Online model based performance monitoring of a shell and tube type heat exchanger using steam and water. Ener. Conv. Manage. 49, 2669-2677. DOI: 10.1016/j.enconman.2008.04.009.
  • 12. Tao, W.Q., Cheng, Y.P. & Lee, T.S. (2007). 3D numerical simulation on fluid flow and heat transfer characteristics in multistage heat exchanger with slit fins. Heat Mass Trans. 44, 125-136. DOI: 10.1007-s00231-0060-0227-2.
  • 13. Luan, Z.J., Zhang, G.M., Tian, M.Ch. & Fan, M.X. (2008). Flow resistance and heat transfer characteristics of a new type plate heat exchanger. J. Hydro. 20, 4, 524-529.
  • 14. Giurgiu, O., Plesa, A. & Socaciu, L. (2016). Plate heat exchangers - flow analysis through mini channels. Ener. Proc. 85, 244-251. DOI: 10.1016/j.egypro.2015.12.236.
  • 15. Andhare, R.S., Shooshtari, A., Dessiatoun, S.V. & Ohadi, M.M. (2016). Heat transfer and pressure drop characteristics of a flat plate manifold microchannel heat exchanger in counter flow configuration. Appl. Ther. Engine. 96, 178-189. DOI: 10.10116/j.aapthermaleng.2015.10.133.
  • 16. Rios-Iribe, E.Y., Cervantes-Gaxiola, M.E., Rubio-Castro, E. & Hernadez-Calderon, O.M. (2016). Heat transfer analysis of a non-Newtonian fluid flowing through a plate heat exchanger using CFD. Appl. Ther. Engine. DOI: 10.1016/j.applthermaleng. 2016.02.094.
  • 17. Dvorak, V. & Vit, T. (2015). Numerical investigation of counter flow plate heat exchanger. Ener. Proc. 83, 341-349. DOI: 10.1016/j.egypro.2015.12.188.
  • 18. ANSYS Inc. Fluent 15.0, User’s guide, ANSYS Inc. Houston, TX, 2015.
  • 19. Internal report from sunfire, 2015.
  • 20. Bhatti, M.S. & Shah, R.K. (1987). Turbulent and transition flow convective heat transfer in duct, chapter 4 in Handbook of Single phase convective heat transfer, S. Kakac, R.K. Shah, W. Aung, John Wiley & Sons, New York, 95-101.
  • 21. Shah, R.K. (2007). Compact heat exchangers - recuperators and regenerators, chapter 13 in Handbook of Energy efficiency and renewable energy, F. Kreith, D.Y. Goswami, 7th May 2007, CRC Press, ISBN: 9780849317309, 13-1-13-72.
  • 22. Pianko-Oprych, P., Kasilova, E. & Jaworski, Z. (2014). Quantification of the radiative and convective heat transfer processes and their effect on mSOFC by CFD modelling. Pol. J. Chem. Technol. 86, 7, 1029-1043. DOI: 10.2478/pjct-2014-0029.
  • 23. Launder, B.E. & Spalding, D.B. (1972). Lectures in Mathematical Models of Turbulence, Academic Press, London, UK.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cdc7f1a3-7066-4789-ace4-e6bc7d37cd85
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.