PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The efficiency of energy use in the dual-fuel PERKINS 1104D-E44TA engine

Identyfikatory
Warianty tytułu
PL
Efektywność wykorzystania energii w silniku PERKINS 1104D-E44TA zasilanym dwupaliwowo
Języki publikacji
EN
Abstrakty
EN
In the nearest future, natural gas may become an important source of energy for internal combustion engines driving road transport vehicles. Reciprocating internal combustion engines are faced with increasingly stringent requirements as regards their environmental impact. It will be more and more difficult to satisfy these requirements for engines powered with conventional fuels. Driving units alternative to reciprocating internal combustion engines still do not meet their users’ expectations, especially in long-distance and heavy transport. Moreover, it turns out that electric drive in cars is not necessarily more ecological than modern internal combustion engines, in particular when we derive electric energy from coal. As a result of this, it is well-grounded to use natural gas to power internal combustion engines. Both ecological and economic reasons support this. The article presents selected results of tests on the dual-fuel PERKINS 1104D-E44TA engine powered with compressed natural gas and diesel oil. It has been proven that in the case of the dual-fuel CI engine, both hourly energy consumption and brake specific energy consumption are higher than for diesel oil consumption only. At the same time, it has been proven that the use of the energy delivered to the cylinders of the engine powered with natural gas and diesel oil is less efficient. The discussed type of dual-fuel combustion in the tested engine is less efficient than the combustion of conventional fuel the engine has been prepared for at the factory.
PL
Gaz ziemny może stać się w najbliższej przyszłości ważnym źródłem energii do zasilania silników spalinowych napędzających pojazdy samochodowe w transporcie drogowym. Tłokowym silnikom spalinowym stawiane są coraz większe wymagania w zakresie ich oddziaływania na środowisko. Wymaganiom tym przy zasilaniu silników paliwami konwencjonalnymi będzie coraz trudniej sprostać. Napędy alternatywne w porównaniu do tłokowych silników spalinowych nadal nie spełniają oczekiwań użytkowników, zwłaszcza w transporcie dalekobieżnym i ciężkim. Okazuje się również, że napęd elektryczny w samochodach nie koniecznie musi być bardziej ekologiczny niż współczesne silniki spalinowe. Zwłaszcza wówczas, kiedy energię elektryczną otrzymujemy z węgla. To powoduje, że zastosowanie gazu ziemnego do zasilania silników spalinowych jest uzasadnione. Przemawiają za tym zarówno względy ekologiczne jak i ekonomiczne. W artykule przedstawiono wybrane wyniki badań silnika PERKINS 1104D-E44TAprzystosowanego do dwupaliwowego zasilania sprężonym gazem ziemnymi olejem napędowym. Wykazano, że przy dwupaliwowym zasilaniu silnika ZS godzinowe zużycie energii oraz jednostkowe zużycie energii jest większe, niż przy jego zasilaniu olejem napędowym. Jednocześnie wykazano mniejszą efektywność wykorzystania energii doprowadzanej do cylindrów silnika z gazem ziemnym i olejem napędowym. Przyjęty sposób dwupaliwowego zasilania badanego silnika jest mniej efektywny niż jego zasilanie paliwem konwencjonalnym, do którego fabrycznie został przystosowany.
Rocznik
Tom
Strony
55--68
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr.
Twórcy
  • Faculty of Mechatronics and Machine Engineering, Department of Automotive Vehicles and Transportation, Kielce University of Technology
  • Faculty of Mechatronics and Machine Engineering, Department of Automotive Vehicles and Transportation, Kielce University of Technology
  • Faculty of Mechatronics and Machine Engineering, Department of Automotive Vehicles and Transportation, Kielce University of Technology
Bibliografia
  • [1] Ambrozik A., Ambrozik T., Kurczyński D., Łagowski P.: The Influence of Injection Advance Angle on Fuel Spray Parameters and Nitrogen Oxide Emissions for a Self-Ignition Engine Fed with Diesel Oil and FAME, Polish Journal of Environmental Studies, Vol. 23, No 6, 2014, pp. 1917-1923.
  • [2] Demirbas A.: Characterization of biodiesel fuels. Energy Sources Part A 31 (2009), pp. 889-896.
  • [3] Millo F., Debnath B.K., Vlachos T., Ciaravino C., Postrioti L., Buitoni G.: Effects of different biofuels blends on performance and emissions of an automotive diesel engine. Fuel 159, Nov. 2015, pp. 614–627.
  • [4] Murugesan A., Umarani C., Subramanian R., Nedunchezhian N.: Bio-diesel as an alternative fuel for diesel engines-A review. Renewable and Sustainable Energy Reviews vol. 13, April 2009, pp. 653÷662.
  • [5] Yaliwal V.S., Banapurmath N.R., Tewari P.G., Kundagol S.I., Daboji S.R., Galveen S.C.: Production of Renewable Liquid Fuels for Diesel Engine Applications – A Review. Cyber Journals: Multidisciplinary Journals in Science and Technology, Journal of Selected Areas in Renewable and Sustainable Energy (JRSE), January Edition, 2011, pp. 1-9.
  • [6] Ambrozik A., Kurczyński D., Łagowski P., Warianek M.: The toxicity of combustion gas from the Fiat 1.3 Multijet engine operating following the load characteristics and fed with rape oil esters. Proceedings of The Institute of Vehicles 1(105)/2016, pp. 23-35.
  • [7] Bai A., Jobbágy P., Popp J., Farkas F., Grasselli G., Szendrei J., Balogh P.: Technical and environmental effects of biodiesel use in local public transport. Transportation Research Part D 47 (2016), pp. 323–335.
  • [8] Labecki L., Ganippa L.C.: Effects of injection parameters and EGR on combustion and emission characteristics of rapeseed oil and its blends in diesel engines. Fuel 98(2012), pp. 15-28.
  • [9] Orliński P.: The influence of camelina oil ester additive to diesel fuel on self-ignition angle in agricultural engine. Journal of KONES Powertrain and Transport, Vol. 20, No 2 2013, pp. 323-328.
  • [10] Orliński P., Orliński S., Wojs M. K.: The effect of diesel fuel mixture and camelina oil ester on the process of fuel injection in traction engine. Journal of KONES Powertrain and Transport, Vol. 20, No 1, 2013, pp. 255-261.
  • [11] Serrano L., Lopes M., Pires N., Ribeiro I., Cascao P., Tarelho L., Monteiro A., Nielsen O., Gameiro da Silva M., Borrego C.: Evaluation on effects of using low biodiesel blends in a EURO 5 passenger vehicle equipped with a common-rail diesel engine. Applied Energy, vol. 146, 2015, pp. 230–238.
  • [12] Encinar J.M., Sánchez N., Martínez G., García L.: Study of biodiesel production from animal fats with high free fatty acid content. Bioresource Technology 102 (2011), pp. 10907–10914.
  • [13] Kirubakaran M., Arul Mozhi Selvan V.: A comprehensive review of low cost biodiesel production from waste chicken fat. Renewable and Sustainable Energy Reviews 82 (2018) pp. 390–401.
  • [14] Wcisło G., Labak N.: Determination of the impact of the type of animal fat used for production of biofuels on the fractional composition of AME. Econtechmod. An international quarterly journal, vol. 6, No. 1, 2017, pp. 111-114.
  • [15] Chen J., Li J., Dong W., Zhang X., Tyagi R.D., Drogui P., Surampalli R.Y.: The potential of microalgae in biodiesel production, Renewable and Sustainable Energy Reviews 90 (2018), pp. 336–346.
  • [16] Faried M., Samer M., Abdelsalam E., Yousef R.S., Attia Y.A., Ali A.S.: Biodiesel production from microalgae: Processes, technologies and recent advancements. Renewable and Sustainable Energy Reviews 79 (2017), pp. 893–913.
  • [17] Wei L., Geng P.: A review on natural gas/diesel dual fuel combustion, emissions and performance. Fuel Processing Technology 142 (2016), pp. 264–278.
  • [18] Chen H., He J., Zhong X.: Engine combustion and emission fuelled with natural gas: A review. Journal of the Energy Institute xxx (2018), pp. 1-14.
  • [19] Safety data sheet.Natural gas (p<200kPa). Polish Oil and Gas Company–PGNiG, 12.05.2014.
  • [20] Material safety data sheet. Natural gas in transmission and distribution networks.Polish Oil and Gas Company-PGNiG. Warszawa 30.10.2010.
  • [21] IPCC Fourth Assessment Report, Working Group 1, Chapter 2.
  • [22] Safety data sheet. Liquefied natural gas - LNG. Polish Oil and Gas Company PGNiG, 29.05.2017.
  • [23] www.energy.ca.gov/almanac/transportation_data/cng-lng.html
  • [24] afdc.energy.gov/fuels/natural_gas_basics.html
  • [25] Johnson D. R., Heltzel R., Nix A. C., Nigel C., Darzi M.: Greenhouse gas emissions and fuel efficiency of in-use high horsepower diesel, dual fuel, and natural gas engines for unconventional well development. Applied Energy 206 (2017) pp. 739–750.
  • [26] Khan M.I., Yasmin T., Shakoor A.: Technical overview of compressed natural gas (CNG) as a transportation fuel. Renewable and Sustainable Energy Reviews 51(2015), pp. 785–797.
  • [27] Sahoo B.B., Sahoo N., Saha U.K.: Effect of engine parameters and type of gaseous fuel on the performance of dual-fuel gas diesel engines - A critical review. Renewable and Sustainable Energy Reviews 13 (2009), pp. 1151–1184.
  • [28] Thiruvengadam A., Besch M., Padmanaban V., Pradhan S., Demirgok B.: Natural gas vehicles in heavy-duty transportation-A review. Energy Policy 122 (2018), pp. 253–259.
  • [29] afdc.energy.gov/vehicles/natural_gas.html
  • [30] McTaggart-Cowan G.P., Rogak S.N., Munshi S.R., Hill P.G., Bushe W.K.: The influence of fuel composition on a heavy-duty, natural-gas direct-injection engine. Fuel 89 (3) (2010), pp. 752–759.
  • [31] Harrington J., Munshi S., Nedelcu C., Ouellette P., Thompson J., Whitfield S.: Direct injection of natural gas in a heavy-duty diesel engine. SAE Technical Paper 2002-01-1630; 2002.
  • [32] McTaggart-Cowan G.P., Reynolds C.C.O., Bushe W.K.: Natural gas fuelling for heavy-duty on-road use: current trends and future direction. Int J Environ Stud 63 (4), 2006, pp. 421–440.
  • [33] Ramasamy D., Goh C.Y., Kadirgama K., Benedict F., Noor M.M., Najafi G., Carlucci A.P.: Engine performance, exhaust emission and combustion analysis of a 4-stroke spark ignited engine using dual fuel injection. Fuel 207 (2017), pp. 719–728.
  • [34] Zou Caineng, Yang Zhi, He Dongbo, Wei Yunsheng, Li Jian, Jia Ailin, Chen Jianjun, Zhao Qun, Li Yilong, Li Jun, Yang Shen: Theory, technology and prospects of conventional and unconventional natural gas. PETROL. EXPLOR. DEVELOP. 45 (4) 2018, pp. 604–618.
  • [35] Perkins Technical Data 1100D Series 1104D-E44TA.
  • [36] Ambrozik A., Ambrozik T., Kurczyński D., Łagowski P.: Conversion of Perkins 1104D-E44TA engine with Common Rail fuel system to natural gas (CNG) fuelling. Proceedings of The Institute of Vehicles 1(97)/2014, pp. 61÷70.
  • [37] Installation and programming instructions for the OSCAR-N DIESEL system. Białystok 2011 ver.2.0.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cdc5885c-f4d4-45d2-8614-7d81ef93a524
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.