Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Synteza środka odbarwiającego i jego zastosowanie
Języki publikacji
Abstrakty
A type of cationic decolourising agent was prepared and applied to printing and dyeing wastewater treatment. The effects of the concentration of the decolourising agent, the pH value and stirring speed on decolourisation efficiency were studied. The results show that the optimum decolourisation process of the decolourising agent is determined as follows: at room temperature, a dosage of the decolourising agent of 7 mg/l, pH =7.0, and a stirring speed of 150 rpm. The decolourising agent applied to decolourise a direct dye, strong acid dye, weak acid dye and reactive dye in simulated wastewater showed high decolourisation efficiency in all cases. The range of decolourisation efficiency from the highest to lowest is as follows: direct dye, weak acid dye, strong acid dye, and reactive dye.
Przygotowano kationowy środek odbarwiający, który zastosowano do drukowania i oczyszczania ścieków barwiarskich. Zbadano wpływ stężenia środka odbarwiającego, wartości pH i prędkości mieszania na skuteczność odbarwiania. Wyniki pokazują, że optymalny proces odbarwiania środkiem odbarwiającym następuje w określonych warunkach: w temperaturze pokojowej, dawka środka odbarwiającego 7 mg/l, pH = 7,0 i szybkość mieszania 150 obrotów na minutę. Środek odbarwiający zastosowany do odbarwiania barwników: bezpośredniego, kwasowego mocnego, słabo kwasowego i reaktywnego w symulowanych ściekach wykazywał we wszystkich przypadkach wysoką skuteczność odbarwiania. Zakres wydajności dekoloryzacji od najwyższej do najniższej jest następujący: barwniki: bezpośredni, słabo kwasowy, kwasowy mocny i reaktywny.
Czasopismo
Rocznik
Strony
100--105
Opis fizyczny
Bilbiogr. 29 poz., rys.
Twórcy
autor
- Tianjin Polytechnic University, School of Textile Science and Engineering, Tianjin 300387, China
- Tianjin Polytechnic University, Tianjin Key Laboratory of Advanced Textile Composites, Tianjin 300387, China
- Tianjin Municipal Key Laboratory of Advanced Fiber and Energy Storage, Tianjin 300387, China
- Shandong binzhou yaguang towel co. LTD, Shandong binzhou256600, China
autor
- Tianjin Polytechnic University, School of Textile Science and Engineering, Tianjin 300387, China
autor
- Shandong binzhou yaguang towel co. LTD, Shandong binzhou256600, China
autor
- Tianjin Polytechnic University, School of Textile Science and Engineering, Tianjin 300387, China
- Tianjin Polytechnic University, Tianjin Key Laboratory of Advanced Textile Composites, Tianjin 300387, China
- Tianjin Municipal Key Laboratory of Advanced Fiber and Energy Storage, Tianjin 300387, China
autor
- Tianjin Polytechnic University, School of Textile Science and Engineering, Tianjin 300387, China
- Tianjin Polytechnic University, Tianjin Key Laboratory of Advanced Textile Composites, Tianjin 300387, China
- Shandong binzhou yaguang towel co. LTD, Shandong binzhou256600, China
Bibliografia
- 1. Li C, Zhang MH, Song CW, Tao P, Sun MH, Shao MH, Wang TH. Enhanced Treatment Ability of Membrane Technology by Integrating an Electric Field for Dye Wastewater Treatment: A Review. Journal of Aoac International 2018; 101 (5), 1341-1352.
- 2. Zhu GT, Xing XJ, Wang JQ, Zhang XW. Effect of Acid and Hydrothermal Treatments on the Dye Adsorption Properties of Biomass-Derived Activated Carbon. Journal of Materials Science 2017; 52 (13): 7664-7676.
- 3. Yao L, Zhang LZ, Wang R, Chou SR, Dong ZL. A New Integrated Approach for Dye Removal from Wastewater by Polyoxometalates Functionalized Membranes. Journal of Hazardous Materials 2016; 301, 462-470.
- 4. Bankole MT, Abdulkareem AS, Tijani JO, Ochigbo SS, Afolabi AS, Roos WD. Chemical Oxygen Demand Removal from Electroplating Wastewater by Purified and Polymer Functionalized Carbon Nanotubes Adsorbents. Water Resources and Industry 2017; 18: 33-50.
- 5. Wołowicz A, Wawrzkiewicz M, Hubicki Z. Toxic Heavy Metal Ions and MetalComplex Dyes Removal from Aqueous Solutions Using an Ion Exchanger and Titanium Dioxide. FIBRES & TEXTILES in Eastern Europe 2018; 26, 2(128): 108-115. DOI: 10.5604/01.3001.0010.5748.
- 6. Zhang N, Jiang B, Zhang LH, Huang ZH, Sun YL, Zong Y, Zhang HM. Low -Pressure Electroneutral Loose Nanofiltration Membranes with Polyphenol-Inspired Coatings for Effective Dye/Divalent Salt Separation. Chemical Engineering Journal 2019; 359, 1442-1452.
- 7. Thomas M, Barbusiński K, Kliś S, Szpyrka E, Chyc M. Synthetic Textile Wastewater Treatment using Potassium Ferrate(VI) – Application of Taguchi Method for Optimisation of Experiment. FIBRES & TEXTILES in Eastern Europe 2018; 26, 3(129): 104-109. DOI: 10.5604/01.3001.0011.7313.
- 8. Mei, RQ, Wei QP, Zhu CW, Ye WT, Zhou B, Ma L, Zhou KC. 3D Macroporous Boron-Doped Diamond Electrode with Interconnected Liquid Flow Channels: A High-Efficiency Electrochemical Degradation Of RB-19 Dye Wastewater Under Low Current. Applied Catalysis B-Environmental 2019; 245: 420-427.
- 9. Bilińska L, Żyłła R, Smółka K, Gmurek M, Ledakowicz S. Modeling of Ozonation of C.I. Reactive Black 5 Through a Kinetic Approach. FIBRES & TEXTILES in Eastern Europe 2017; 25, 5(125): 54-60. DOI: 10.5604/01.3001.0010.4628.
- 10. Xu Y, Wang C, Hou J, Wang PF, You GX, Miao LZ, Zhang F. Application of Zero Valent Iron Coupling with Biological Process for Wastewater Treatment: A Review. Reviews in Environmental Science and Bio-Technology 2017; 16 (4): 667-693.
- 11. Wang YM, Cao WP, Jiang JL, Chen J. Performance of an Anaerobic Baffled Reactor (ABR) for the Pretreatment of Dyeing Industry Wastewater. Desalination and Water Treatment 2017; 68: 338-344.
- 12. Kochling T, Ferraz ADN, Florencio L, Kato MT, Gavazza S. 454-Pyrosequencing Analysis of Highly Adapted Azo Dye-Degrading Microbial Communities in a Two-Stage Anaerobic-Aerobic Bioreactor Treating Textile Effluent. Environmental Technology 2017; 38 (6): 687-693.
- 13. Liu ZD, Fang KJ, Gao HG, Liu XM, Zhang JF. Effect of Cotton Fabric Pretreatment on Drop Spreading and Colour Performance of Reactive Dye Inks. Coloration Technology 2016; 132, 407-413.
- 14. Nallathambi A, Rengaswami GDV. Salt-Free Reactive Dyeing of Cotton Hosiery Fabrics by Exhaust Application of Cationic Agent. Carbohydrate Polymers 2016; 152: 1-11.
- 15. Sun ZL, Zhou X, Xing ZQ. Effect of Liquid Ammonia Treatment on the Pore Structure of Mercerized Cotton and Its Uptake of Reactive Dyes. Textile Research Journal, 2016; 86: 1625-1636.
- 16. Torres L, Tiersch TR. Amine Reactive Dyes: An Alternative tTo Estimate Membrane Integrity in Fish Sperm Cells. Aquaculture 2016; 463: 71-78.
- 17. He BY, Wang XC, Xue HY. The Performance of Chitosan/Gelatin Composite Microspheres in the Wash-Off Procedure of Reactive Dyeing. Coloration Technology 2016; 132: 353-360.
- 18. Jafari A J, Kakavandi B, Kalantary RR, Gharibi H, Asadi A, Azari A, Babaei AA, Takdastan A. Application of Mesoporous Magnetic Carbon Composite for Reactive Dyes Removal: Process Optimization Using Response Surface Methodology. Korean Journal of Chemical Engineering, 2016; 33: 2878-2890
- 19. Wang GW, Zheng CL, Sun J. Synthesis and Salt-Free Dyeing Characteristics of Cationic Reactive Dyes Containing Polyetheramine Segments. Coloration Technology 2016; 132: 344-349.
- 20. Liu Y, Zhao X. Preparation of a Cationic Environment-Friendly Fixing Agent. FIBRES & TEXTILES in Eastern Europe 2017; 25, 6(126): 96-102. DOI: 10.5604/01.3001.0010.5378.
- 21. Freitas OM, Moura LM, Figueiredo SA, de Amorim MTP. Adsorption Equilibrium Studies of a Simulated Textile Effluent Containing a Wool Reactive Dye on Gallinaceous Feathers. Coloration Technology 2016; 132: 421-430.
- 22. Bahadir SK, Jevsnik S, Fakin D, Sahin UK. Color and Electrical Resistance Evaluation of Cotton Fabrics Composed of Stainless Steel Yarns Treated with Direct and Reactive Dyes. Textile Research Journal 2016; 86, 1356-1371.
- 23. Cheng DH, Lin J, Lu S, Hao X, Lu YH. Adsorption Performances of the Reusable Ionic Liquid-Iron Coordination Complex (ILICC) Adsorbent to Remove Reactive Dyes. Desalination and Water Treatment 2016; 57: 20544-20551.
- 24. Fu S, Farrell MJ, Hauser PJ, Hinks D, Jasper WJ, Ankeny MA. Real-Time Dyebath Monitoring of Reactive Dyeing on Cationized Cotton for Levelness Control: Part 1-Influence of Dye Structure, Temperature and Addition of Soda Ash. Cellulose 2016; 23: 3319-3330.
- 25. Balci B, Erkurt FE. Adsorption of Reactive Dye from Aqueous Solution and Synthetic Dye Bath Wastewater by Eucalyptus Bark/Magnetite Composite. Water Science and Technology 2016; 74, 1386-1397.
- 26. Wang B, Zhu YX, Zhou TC, Xie KL. Synthesis and Properties of Chitosan Membranes Modified by Reactive Cationic Dyes as A Novel Alkaline Exchange Membrane for Low Temperature Fuel Cells. International Journal of Hydrogen Energy 2016; 41: 18166-18177.
- 27. Yu PC, Chen CI. Yen FS, Ray DT, Yen SCM. Examination of the Dye-Fixing Ability of Porous-Alumina Flake Powders. Journal of the American Ceramic Society 2013; 96, 1118-1123.
- 28. Zhang L, Li M, Tian A, Fu SH. Mechanism and Properties of Coloured Nanoscale SiO2 Prepared from Silica and Reactive Dyes. Coloration Technology 2016; 132: 399-406.
- 29. Zhang YQ, Wei XC, Long JJ. Ecofriendly Synthesis and Application of Special Disperse Reactive Dyes in Waterless Coloration of Wool with Supercritical Carbon Dioxide. Journal of Cleaner Production, 2016; 133, 746-756.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cdc51d82-37c3-4232-a151-15dcb3c09191