PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Advancing Cardiac Detection in Chest X-ray Images Using Machine Learning: A Practical Application of AI in Medical Imaging

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Objectives: In order to increase diagnostic precision and efficiency in clinical settings, the goal is to assess how well sophisticated convolutional neural networks (CNNs) perform automated cardiac area recognition from chest X-ray pictures. Methods: 496 high-resolution DICOM chest X-ray images (1024 x 1024) had been used as the dataset. Images were preprocessed, which included augmentation (e.g., scaling, rotation, contrast correction), normalization, and resizing. Metrics including Mean Squared Error (MSE) and Intersection over Union (IoU) were used to train and compare many CNN architectures (AlexNet, GoogLeNet, VGG-16, ResNet-18, and ResNet-50). The Adam optimizer was used in the training phase, with a batch size of 32 and 100 epochs. Validation was done on 96 images, and performance was measured with IoU scores and bounding box prediction accuracy. Results: ResNet-50 outperformed the other models, with 93.2% accuracy and a mean IoU of 0.84 with very little variability. In terms of localization accuracy and training stability, the model outperformed alternative designs and demonstrated strong bounding box prediction abilities. The reliability of ResNet-50 in pinpointing specific cardiac regions under various imaging conditions is demonstrated by these results. Conclusions: The study concludes by highlighting the revolutionary potential of deep learning in automating the detection of cardiac regions in chest X-rays. The best model turned out to be ResNet-50, which presented a big stride in incorporating AI-based solutions into diagnostic processes, especially in environments with limited resources. Combining detection and segmentation for improved diagnostic insights should be investigated in future studies.
Rocznik
Strony
129--134
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
  • University of Bern and Inselspital, Clinic for Nuclear Medicines; Freiburgstrasse, CH-3010, Bern, Switzerland
  • Doctoral School of Medical and Health Sciences, Jagiellonian University Collegium Medicum, Kraków, Poland
  • Department of Medical Physics and Centre for Theranostics, Jagiellonian University, Kraków, Poland
  • Heart and Vascular Disease Clinics, Jagiellonian University Collegium Medicum, Kraków, Poland
  • Department of Radiology, Specialist Hospital Ludwik Rydygier in Kraków, Poland
  • Department of Medical Physics and Centre for Theranostics, Jagiellonian University, Kraków, Poland
Bibliografia
  • 1. Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RM. ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases. 2017; arXiv:1705.02315.
  • 2. Lakhani P, Sundaram B. Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks. Radiology. 2017;284(2):574-82. doi: https://doi. org/10.1148/radiol.2017162326.
  • 3. He Y, Zhu C, Wang J, Savvides M, Zhang X. Bounding Box Regression With Uncertainty for Accurate Object Detection. 2019;arXiv:1809.08545.
  • 4. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44-56. doi: https://doi.org/10.1038/s41591-018-0300-7.
  • 5. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60-88. doi: https://doi.org/10.1016/j.media.2017.07.005.
  • 6. Bista R, Timilsina A, Manandhar A, Paudel A, Bajracharya A, Wagle, S, et al. Advancing Tuberculosis Detection in Chest X-rays: A YOLOv7-Based Approach. Information. 2023;14:655.
  • 7. Franquet T. Imaging of Community-acquired Pneumonia. J Thorac Imaging. 2018;33(5):282-94. doi: https://doi.org/10.1097/RTI.0000000000000347.
  • 8. Kelly B. The chest radiograph. Ulster Med J. 2012;81(3):143-8.
  • 9. Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. 2014;arXiv:1412.6980.
  • 10. Chicco D, Jurman G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics. 2020;21(1):6. doi: https://doi.org/10.1186/s12864-019-6413-7.
  • 11. Ren S, He K, Girshick R, Sun J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans Pattern Anal Mach Intell. 2017;39(6):1137-49. doi: https://doi.org/10.1109/TPAMI.2016.2577031.
  • 12. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Communications of the ACM. 2017;60(6):84-90. doi: https://doi.org/10.1145/3065386.
  • 13. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D. Going deeper with convolutions. In: Conference on Computer Vision and Pattern Recognition (CVPR): 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2015 June 7-12; Boston, MA, USA. New Jersey: IEEE; 2015. pp. 1-9. doi: https://doi.org/10.1109/ CVPR.2015.7298594.
  • 14. Liu S, Deng W. Very deep convolutional neural network based image classification using small training sample size. In: 3rd IAPR Asian Conference on Pattern Recognition (ACPR): 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR); 2015 Nov 3-6; Kuala Lumpur, Malaysia. New Jersey: IEEE; 2015. pp. 730-4. doi: https://doi.org/10.1109/ ACPR.2015.7486599.
  • 15. He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR): 2016 IEEE Conference on Computer Vision and Pattern Recognition; 2016 June 27-30; Las Vegas, NV, USA: IEEE; 2016. pp. 770-8. doi: https://doi.org/10.1109/CVPR.2016.90.
  • 16. Mingxing T, Le Q. Efficient Net: Rethinking model scaling for convolutional neural networks. 2019;arXiv:1905.11946.
  • 17. Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, et al. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. 2017; arXiv:1704.04861.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cdb9b515-8a25-47e2-bf71-40738c70d6f4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.