PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

NTC thermistor nonlinearity compensation using Wheatstone bridge and novel dual-stage single-flash piecewise-linear ADC

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
NTC thermistors are frequently used low in cost temperature sensors which provide some of the most desirable sensing features. However, due to the nonlinear static transfer function their sensitivity decreases with temperature increase, causing lower measurement accuracy in some regions of the measurement range. This paper proposes a method for NTC thermistor nonlinearity compensation using a Wheatstone bridge and a novel dual-stage single-flash piecewise-linear ADC. Both conversion stages are performed using the same flash ADC of a novel design based on a reduced number of comparators employed. In this manner, simpler design, lower production costs, higher compactness and lower power consumption of the linearizing ADC, are achieved. The proposed linearizing method is tested on the Vishay NTCLE413E2103F520L thermistor, in the range from 0°C to 100°C, and the obtained results confirmed the effectiveness of the method in measurement accuracy improvement: when the flash ADC of 10-bit resolution is employed the accuracy obtained is 7.4747 ·10-5°C.
Rocznik
Strony
523--537
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr., wzory
Twórcy
  • University of Niš, Faculty of Electronic Engineering, Measurements Department, Aleksandra Medvedeva 14, 18000 Niš, Serbia
  • University of Niš, Faculty of Electronic Engineering, Measurements Department, Aleksandra Medvedeva 14, 18000 Niš, Serbia
Bibliografia
  • [1] Michalski, L., Eckersdorf, K., Kucharski, J., & McGhee, J. (2001). Temperature Measurement. John Wiley & Sons, Ltd. https://doi.org/10.1002/0470846135
  • [2] Webster, J., & Eren, H. (2014). Measurement, Instrumentation, and Sensors Handbook: Spatial, Mechanical, Thermal, and Radiation Measurement. CRC Press. https://doi.org/10.1201/b15474
  • [3] Vishay. (2020). NTC Thermistors, Mini Epoxy PVC Twin Insulated Leads. [Datasheet NTCLE413, Document Number: 29078]. https://www.vishay.com/docs/29078/ntcle413.pdf
  • [4] Jeong, D. H., Kim, J. D., Song, H. J., Kim, Y. S., & Park, C. Y. (2015). Efficient calibration tool for thermistor temperature measurements. Applied Mechanics and Materials, 764-765, 1304-1308. https://doi.org/10.4028/www.scientific.net/amm.764-765.1304
  • [5] Webster, J. G. (1999). The Measurement, Instrumentation and Sensors Handbook. CRC Press LLC. https://doi.org/10.1201/9781003040019
  • [6] Stankovic, S. B., & Kyriacou, P. A. (2011). Comparison of thermistor linearization techniques for accurate temperature measurement in phase change materials. Journal of Physics: Conference Series. 307(1), 1-6. https://doi.org/10.1088/1742-6596/307/1/012009
  • [7] Lukić, J., & Denić, D. (2015). A novel design of an NTC thermistor linearization circuit. Metrology and Measurement Systems, 22(3), 351-362. https://doi.org/10.1515/mms-2015-0035
  • [8] Oladimeji, I., Sabo Miya, H., Abdulkarim, A., Mudathir, A., & Amuda, S. (2019). Design of Wheat-stone bridge based thermistor signal conditioning circuit for temperature measurement. Journal of Engineering Science and Technology Review. 12(1), 12-17. https://doi.org/10.25103/jestr.121.02
  • [9] Nagarajan, P. R., George, B., & Kumar, V. J. (2017). A linearizing digitizer for Wheatstone bridge based signal conditioning of resistive sensors. IEEE Sensors Journal, 17(6), 1696-1705. https://doi.org/10.1109/JSEN.2017.2653227
  • [10] Nenova, Z., & Nenov T. (2009). Linearization circuit of the thermistor connection. IEEE Transactions on Instrumentation and Measurement, 58(2), 441-449. https://doi.org/10.1109/TIM.2008.2003320
  • [11] Maiti, T. (2008). A new hardware approach for the linearization of remote thermistor temperature-voltage characteristic. International Journal of Electronics, 95(2), 169-176. https://doi.org/10.1080/00207210801915642
  • [12] Sarkar, A., Dey, D., & Munshi, S. (2013). Linearization of NTC thermistor characteristic using opamp based inverting amplifier. IEEE Sensors Journal, 13(12), 4621-4626. https://doi.org/10.1109/JSEN.2013.2267332
  • [13] Lopez-Martin, A. J., & Carlosena, A. (2013). Sensor signal linearization techniques: A comparative analysis. Proceedings of the IEEE 4th Latin American Symposium on Circuits and Systems (LASCAS), Peru, 1-4. https://doi.org/10.1109/LASCAS.2013.6519013
  • [14] Dias Pereira, J. M., Postolache, O., & Silva Girao, P. M. B. (2007). A digitally programmable A/D converter for smart sensors applications. IEEE Transactions on Instrumentation and Measurement, 56(1), 158-163. https://doi.org/10.1109/TIM.2006.887771
  • [15] Santos, M., Horta, N., & Guilherme, J. (2014). A survey on nonlinear analog-to-digital converters. Integration, the VLSI Journal, 47(1), 12-22. https://doi.org/10.1016/j.vlsi.2013.06.001
  • [16] Mohan, N. M., Kumar, V. J., & Sankaran, P. (2011). Linearizing dual-slope digital converter suitable for a thermistor. IEEE Transactions on Instrumentation and Measurement, 60(5), 1515-1521. https://doi.org/10.1109/TIM.2010.2092875
  • [17] Mahaseth, D., Kumar, L., & Islam, T. (2018). An efficient signal conditioning circuit to piecewise linearizing the response characteristic of highly nonlinear sensors. Sensors and Actuators A: Physical, 280(2018), 559-572. https://doi.org/10.1016/j.sna.2018.08.001
  • [18] Lukić, J., Živanović, D., & Denić, D. (2015). A compact and cost-effective linearization circuit used for angular position sensors. Facta Universitatis Series: Automatic Control and Robotics, 14(2), 123-134.
  • [19] Lopez-Martin, A. J., Zuza, M., & Carlosena, A. (2003). A CMOS A/D converter with piecewise linear characteristic and its application to sensor linearization. Analog Integrated Circuits and Signal Processing, 36(1-2), 39-46. https://doi.org/10.1023/A:1024437311497
  • [20] Bucci, G., Faccio, M., & Landi, C. (2000). New ADC with piecewise linear characteristic: case study-implementation of a smart humidity sensor. IEEE Transactions on Instrumentation and Measurement, 49(6), 1154-1166. https://doi.org/10.1109/19.893250
  • [21] Chio, U. F., Wei, H. G., Zhu, Y., Sin, S. W., U. S. P., Martins, R. P., & Maloberti, F. (2010). Design and experimental verification of a power effective flash-SAR subranging ADC. IEEE Transactions on Circuits and Systems - II: Express Briefs, 57(8), 607-611. https://doi.org/10.1109/TCSII.2010.2050937
  • [22] Jovanović, J., & Denić, D. (2016). A cost-effective method for resolution increase of the two-stage piecewise linear ADC used for sensor linearization. Measurement Science Review, 16(1), 28-34. https://doi.org/10.1515/msr-2016-0005
  • [23] Lee, J. I., & Song, J. (2013). Flash ADC architecture using multiplexers to reduce a preamplifier and comparator count. Proceedings of the IEEE International Conference of IEEE Region 10 (TENCON 2013), China, 1-4. https://doi.org/10.1109/TENCON.2013.6718487
  • [24] Lee, W., Huang, P., Liao, Y., & Hwang, Y. (2007). A new low power flash ADC using multiple-selection method. Proceedings of the IEEE Conference on Electron Devices and Solid-State Circuits, Taiwan, 341-344. https://doi.org/10.1109/EDSSC.2007.4450132
  • [25] International Electrotechnical Commission. (2015). Preferred number series for resistors and capacitors (IEC 60063:2015). https://webstore.iec.ch/publication/22011
  • [26] Fraden, J. (2010). Handbook of Modern Sensors: Physics, Designs, and Applications. Springer Science+Business Media. https://doi.org/10.1007/978-1-4419-6466-3
  • [27] Regtien, P., & Dertien, E. (2018). Sensors for Mechatronics. Elsevier. https://doi.org/10.1016/C2016-0-05059-3
Uwagi
1. This work has been supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia.
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cdb6d578-bc59-493e-a2db-e10b419ed598
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.