Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
Following the results presented in [21], we present an efficient approach to the Schur parametrization/modeling of a subclass of second-order time-series which we term p-stationary time-series, yielding a uniform hierarchy of algorithms suitable for efficient implementations and being a good starting point for nonlinear generalizations to higher-order non-Gaussian nearstationary time-series.
Rocznik
Tom
Strony
343--350
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
autor
- Signal Processing Systems Department, Faculty of Electronics, Wroclaw University of Science and Technology, Wroclaw
autor
- Signal Processing Systems Department, Faculty of Electronics, Wroclaw University of Science and Technology, Wroclaw, Poland
Bibliografia
- [1] J.Chun, T.Kailath, Generalized Displacement Structure for Block-Toeplitz, Toeplitz-block and Toeplitz-derived Matrices, NATO ASF Series, Vol. F 70, Numerical Linear Algebra, Digital Signal Processing and Parallel Algorithms, G.H.Golub and p.Van Dooren, Eds., Springer-Verlag Berlin Heildelberg, pp. 215-236, 1991.
- [2] E.F.A.Deprettere, S.C.Lie, Generalized Schur-Darlington Algorithms for Lattice-Structured Matrix Inversion and Stochastic Modelling, Techn.Rept., Delft Univ.Techn. 1980.
- [3] P.Dewilde, H.Dym, Schur Recursions, Error Formulas and Convergence of Rational Estimators for Stationary Stochastic Sequences, IEEE Trans. on Information Theory, vol. IT-27(4), July 1981, pp.446-461.
- [4] P.Dewilde, A Course on the Algebraic Schur and Nevanlinna-Pick Interpolation Problems, in: Algorithms and Parallel VLSI Architectures, vol. A: Tutorials, E.F.Deprettere and A.-J. van der Veen (eds.), Elseviere Science Publ., 1991, pp.13-69.
- [5] P.Dewilde, Stochastic Modelling with Orthogonal Filters, in: Outils et modeles mathematiques pour l’automatique, l’analyse de systemes et le traitement du signal, CNRS (ed.), Paris 1982, pp.331-398.
- [6] P.Dewilde, E.F.A.Deprettere, The Generalized Schur Algorithm: Approximation and Hierarchy, in: Operator Theory: Advances and Applications, vol. 29, Birkhäuser Verlag, Basel, 1988, pp.97-116.
- [7] P.Dewilde, A.C.Vieira, T.Kailath, On a Generalized Szegö-Levinson Realization Algorithm for Optimal Linear Predictors Based on a Network Synthesis Approach, IEEE Trans. on Circuits and Systems, vol. CAS-25, No.9, September 1978, pp.663-675.
- [8] T.Kailath, Linear Estimations for Stationary and Near-Stationary Processes, in: Modern Signal Processing, T.Kailath (Ed.), Hemisphere Publishing Corp./Springer-Verlag 1985, pp.59-128.
- [9] T.Kailath, A Theorem of I.Schur and Its Impact on Modern Signal Processing, in: I.Schur Methods in Operator Theory and Signal Processing, I.Gohberg (Ed.), Operator Theory: Advances and Applications, vol.18, Birkhäuser Verlag 1986, pp.9-30.
- [10] T.Kailath, Time-Variant and Time-Invariant Lattice-Filters for Nonstationary Processes, in: Outils et modeles mathematiques pour l’automatique, l’analyse de systemes et le traitement du signal, CNRS (ed.), Paris 1982, pp.417-464.
- [11] T.Kailath, S.Y.Kung, M.Morf, Displacement Ranks of Matrices and Linear Equations, J.Math.Anal.Appl., Volume 68, 1979.
- [12] T.Kailath, Linear Estimations for Stationary and Near-Stationary Processes, in: Modern Signal Processing, T.Kailath (Ed.), Hemisphere Publishing Corp./Springer-Verlag 1985, pp.59-128.
- [13] T.Kailath, S.Kung, M.Morf, Displacement ranks of matrices and linear equations, J. Math. Anal. Appl., 68, pp.396-407, 1979.
- [14] D.T.L.Lee, M.Morf, B.Friedlander, Recursive Least-Squares Ladder Estimation Algorithms, IEEE Trans. on Circuits and Systems, vol. CAS-28, 1981, pp.467-481.
- [15] H.Lev-Ari, T.Kailath, Lattice filter parametrization and modelling of nonstationary processes, IEEE Trans. on Inf. Theory, vol. IT-30, 1984, pp.2-16.
- [16] H.Lev-Ari, T.Kailath, Triangular factorization of structured Hermitian matrices, Operator Theory, Advances and Applications, vol. 18, Boston, pp. 301-324, 1986.
- [17] F.Lwow, Orthogonal parametrization of random impulse signals as a basis of acoustic exposure evaluation in sport shooting, Ph.D.Thesis, Faculty of Electronics, Wroclaw University of Science and Technology, Techn.Rept. I-28/PRE-032/2000.
- [18] I.Schur, On Power Series Which Are Bounded in the Interior of the Unit Circle I, in: I.Schur Methods in Operator Theory and Signal Processing, I.Gohberg (Ed.), Operator Theory: Advances and Applications, vol.18, Birkhäuser Verlag 1986, pp.31-60.
- [19] A.Wielgus, Generalized Versus Classical Kolmogorov Isomorphism for Second-Order Stochastic Processes, submitted for publication.
- [20] A.Wielgus, U.Libal, W.Magiera, Nonlinear Complexity Reduction: Sparsity of the Generalized Schur Coefficient Matrices and Frobenius Norm Criterion, IEEE Signal Processing Symposium (SPSympo-2017).
- [21] A.Wielgus, J.Zarzycki, Efficient Schur Parametrization of Near-Stationary Stochastic Processes, Proc. IWSSIP’2017.
- [22] A.Wielgus, J.Zarzycki, Nonlinear Schur Parametrization and Orthogonal Modeling of p-Stationary Higher-Order Stochastic Processes, Techn. Rept. Wroclaw University of Science and Technology, 2017 (submitted for publication).
- [23] A.Wielgus, J.Zarzycki, F.Lwow, Schur Parametrization and Orthogonal Modeling of p-Stationary Second-Order Stochastic Processes, submitted for publication.
- [24] J.Zarzycki, P. Dewilde, The nonlinear nonstationary Schur algorithm, Proc. Workshop on Advanced Algorithms and Their Realizations, Editor M.Verhaegen (Delft Univ. Techn., Chateaux de Bonas, 1991, paper V3.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cdb66155-4a66-4c57-b707-155078e063e5