PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preparation and evaluation of conductive polymeric composite from metals alloys and graphene to be future flexible antenna device

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Every year hundreds of serious accidents and catastrophic are accompanied by mining sector services as disaster, flooding, and demolition. To reduce the severity of the results such as high death numbers, lost communication inner and out mining, we have to find an easy way to improve communication means during that problems. In this paper, we reach out to fabricate durable, flexible, and wearable chaps, in addition to an easier carrier with highly efficient receiving and sending a signal at 2.4 GHz broad wide band. By doping a bunch of unique conductive metals (silver, copper, and gallium indium alloy) assembled on Graphene, its integration inside Polydimethylsiloxane to be future applicable antenna. Furthermore, we studied the physical and electric properties of a composite including Electrochemical Impedance properties (EIS), cyclic voltammetry (CV), and its thermal stability chip (DSC), as well as, using Transmission electron microscopy (TEM), and, scanning electron microscopy (SEM) techniques to clarify the surface morphology of fabricated materials. In addition to various measurements had been carried out such as Ultraviolet-visible, inductively coupled plasma (ICP) spectroscopy, and Energy-dispersive X-ray spectroscopy (EDX) to reinforce and elucidate the solid-state of ions inside fabricated Antenna. On the other hand, throughout stress-strain for the stretchability of fabricated is expanded to 30% of its original length, in addition to thermal stability reached to 485°C compared to pure PDMS substrate, with enhancing electric conductivity of composite ship.
Rocznik
Strony
34--52
Opis fizyczny
Bibliogr. 82 poz., il., wykr.
Twórcy
  • School of Engineering, Université du Québec en Abitibi-Témiscamingue,Canada
  • Mechanical Engineering Department, Université du Québec en Abitibi-Témiscamingue, Canada
autor
  • Electric Engineering Department, Université du Québec en Abitibi-Témiscamingue, Canada
Bibliografia
  • 1. Zheng, J., Juha. A., Asko S., Makela T., Ari A., and Raisanen A. V. (2018): Roll-to-roll reverse offset printing of millimeter-wave transmission lines and antennas on flexible substrates. 12th European Conference on Antennas and Propagation (EuCAP 2018), 84-4.
  • 2. Subramanian, V. (2005). Progress toward development of all-printed RFID tags: materials, processes, and devices. Proceedings of the IEEE 93.7 1330-1338.
  • 3. Zhan, Y., Yongfeng, M & Lirong, Z (2014). Materials capability and device performance in flexible electronics for the Internet of Things. Journal of Materials Chemistry C 2 (7) 1220-1232.
  • 4. Wang, X., Lu, X., Liu, B., Chen, D., Tong, Y., & Shen, G. (2014). Flexible energy‐storage devices: design consideration and recent progress. Advanced Materials, 26(28), 4763-4782.
  • 5. Tobjörk, D., & Österbacka, R. (2011). Paper electronics. Advanced Materials, 23(17), 1935-1961.
  • 6. Ranasingha, O. K., Luce, A., Strack, G., Hardie, C., Piro, Y., Haghzadeh, M., & Akyurtlu, A. (2020). Selective laser sintering of conductive patterns on a novel silver–barium strontium titanate composite material. Flexible and Printed Electronics, 5(4), 045007.
  • 7. Weiss, N. O., Zhou, H., Liao, L., Liu, Y., Jiang, S., Huang, Y., & Duan, X. (2012). Graphene: an emerging electronic material. Advanced Materials, 24(43), 5782-5825.
  • 8. Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F. M., Sun, Z., De, S., ... & Coleman, J. N. (2008). High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology, 3(9), 563-568.
  • 9. Torrisi, F., Hasan, T., Wu, W., Sun, Z., Lombardo, A., Kulmala, T. S., & Ferrari, A. C. (2012). Inkjet-printed graphene electronics. ACS Nano, 6(4), 2992-3006.
  • 10. Gómez-Navarro, C., Weitz, R. T., Bittner, A. M., Scolari, M., Mews, A., Burghard, M., & Kern, K. (2007). Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Letters, 7(11), 3499-3503.
  • 11. Mao, S., Pu, H., & Chen, J. (2012). Graphene oxide and its reduction: modeling and experimental progress. RSC Advances, 2(7), 2643-2662.
  • 12. Ciesielski, A., & Samori, P. (2014). Graphene via sonication-assisted liquid-phase exfoliation. Chemical Society Reviews, 43(1), 381-398.
  • 13. Mayyas, M., Li, H., Kumar, P., Ghasemian, M. B., Yang, J., Wang, Y., & Kalantar‐Zadeh, K. (2020). Liquid‐Metal‐Templated Synthesis of 2D Graphitic Materials at Room Temperature. Advanced Materials, 32(29), 2001997.
  • 14. Shaltout, A. M., Kinsey, N., Kim, J., Chandrasekar, R., Ndukaife, J. C., Boltasseva, A., & Shalaev, V. M. (2016). Development of optical metasurfaces: emerging concepts and new materials. Proceedings of the IEEE, 104(12), 2270-2287.
  • 15. Peng, Y., Liu, H., Xin, Y., & Zhang, J. (2021). Rheological conductor from liquid metal-polymer composites. Matter, 4(9), 3001-3014.
  • 16. Chujo, Y., & Tanaka, K. (2015). New polymeric materials based on element blocks. Bulletin of the Chemical Society of Japan, 88(5), 633-643.
  • 17. Beadie, G., Sandrock, M. L., Wiggins, M. J., Lepkowicz, R. S., Shirk, J. S., Ponting, M., & Baer, E. (2008). Tunable polymer lens. Optics Express, 16(16), 11847-11857.
  • 18. Santiago-Alvarado, A., Vazquez-Montiel, S., Gonzalez-Garcia, J., Iturbide-Jimenez, F., Cruz-Felix, A. S., Cruz-Martinez, V., & Castro-Gonzalez, G. (2015). Advances in the development of tunable lenses in Mexico. Photonics Letters of Poland, 7(1), 20-22.
  • 19. Judy, J. W. (2001). Microelectromechanical systems (MEMS): fabrication, design, and applications. Smart Materials and Structures, 10(6), 1115.
  • 20. Wang, Z., Volinsky, A. A., & Gallant, N. D. (2014). Crosslinking effect on polydimethylsiloxane elastic modulus measured by custom‐built compression instrument. Journal of Applied Polymer Science, 131(22).
  • 21. Liu, M., Sun, J., & Chen, Q. (2009). Influences of heating temperature on mechanical properties of polydimethylsiloxane. Sensors and Actuators A: Physical, 151(1), 42-45.
  • 22. Prajzler, V., Nekvindova, P., Spirkova, J., & Novotny, M. (2017). The evaluation of the refractive indices of bulk and thick polydimethylsiloxane and polydimethyl-diphenylsiloxane elastomers by the prism coupling technique. Journal of Materials Science: Materials in Electronics, 28(11), 7951-7961.
  • 23. Martinček, I., Turek, I., & Tarjányi, N. (2014). Effect of boundary on refractive index of PDMS. Optical Materials Express, 4(10), 1997-2005.
  • 24. Zeng, H., Duan, G., Li, Y., Yang, S., Xu, X., & Cai, W. (2010). Blue Luminescence of ZnO nanoparticles based on non‐equilibrium processes: defect origins and emission controls. Advanced Functional Materials, 20(4), 561-572.
  • 25. Devan, R. S., Patil, R. A., Lin, J. H., & Ma, Y. R. (2012). One‐dimensional metal‐oxide nanostructures: recent developments in synthesis, characterization, and applications. Advanced Functional Materials, 22(16), 3326-3370.
  • 26. Mishra, Y. K., Kaps, S., Schuchardt, A., Paulowicz, I., Jin, X., Gedamu, D., & Adelung, R. (2014). Versatile fabrication of complex shaped metal oxide nano-microstructures and their interconnected networks for multifunctional applications. KONA Powder and Particle Journal, 31, 92-110.
  • 27. Dai, L. (2013). Functionalization of graphene for efficient energy conversion and storage. Accounts of Chemical Research, 46(1), 31-42.
  • 28. Mannov, E., Schmutzler, H., Chandrasekaran, S., Viets, C., Buschhorn, S., Tölle, F., & Schulte, K. (2013). Improvement of compressive strength after impact in fibre reinforced polymer composites by matrix modification with thermally reduced graphene oxide. Composites Science and Technology, 87, 36-41.
  • 29. Raquez, J. M., Habibi, Y., Murariu, M., & Dubois, P. (2013). Polylactide (PLA)-based nanocomposites. Progress in Polymer Science, 38(10-11), 1504-1542.
  • 30. Wong, M., Paramsothy, M., Xu, X. J., Ren, Y., Li, S., & Liao, K. (2003). Physical interactions at carbon nanotube-polymer interface. Polymer, 44(25), 7757-7764.
  • 31. Giannelis, E. P. (1996). Polymer layered silicate nanocomposites. Advanced Materials, 8(1), 29-35.
  • 32. Lipatov, I. S., & Lipatov, Y. S. (1995). Polymer reinforcement. ChemTec Publishing.
  • 33. Daniel, I. M., Ishai, O., Daniel, I. M., & Daniel, I. (2006). Engineering mechanics of composite materials (vol. 1994). New York: Oxford University Press
  • 34. Fu, S. Y., Feng, X. Q., Lauke, B., & Mai, Y. W. (2008). Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Composites Part B: Engineering, 39(6), 933-961.
  • 35. Fiedler, B., Gojny, F. H., Wichmann, M. H., Nolte, M. C., & Schulte, K. (2006). Fundamental aspects of nano-reinforced composites. Composites Science and Technology, 66(16), 3115-3125.
  • 36. Bartos, A., Anggono, J., Farkas, Á. E., Kun, D., Soetaredjo, F. E., Móczó, J., & Pukánszky, B. (2020). Alkali treatment of lignocellulosic fibers extracted from sugarcane bagasse: Composition, structure, properties. Polymer Testing, 88, 106549.
  • 37. Petrović, Z. S., & Farris, R. (1995). Structure–property relationship in fibers spun from poly (ethylene terephthalate) and liquid crystalline polymer blends. II. Effect of spinning temperature on fiber properties. Journal of Applied Polymer Science, 58(8), 1349-1363.
  • 38. Paul, D. R., & Robeson, L. M. (2008). Polymer nanotechnology: nanocomposites. Polymer, 49(15), 3187-3204.
  • 39. Lachman, N., Wiesel, E., de Villoria, R. G., Wardle, B. L., & Wagner, H. D. (2012). Interfacial load transfer in carbon nanotube/ceramic microfiber hybrid polymer composites. Composites Science and Technology, 72(12), 1416-1422.
  • 40. Pötschke, P., Krause, B., Buschhorn, S. T., Köpke, U., Müller, M. T., Villmow, T., & Schulte, K. (2013). Improvement of carbon nanotube dispersion in thermoplastic composites using a three roll mill at elevated temperatures. Composites Science and Technology, 74, 78-84.
  • 41. Pavlidou, S., & Papaspyrides, C. D. (2008). A review on polymer–layered silicate nanocomposites. Progress in Polymer Science, 33(12), 1119-1198.
  • 42. Breuer, O., & Sundararaj, U. (2004). Big returns from small fibers: a review of polymer/carbon nanotube composites. Polymer Composites, 25(6), 630-645.
  • 43. Frank, O., Tsoukleri, G., Riaz, I., Papagelis, K., Parthenios, J., Ferrari, A. C., ... & Galiotis, C. (2011). Development of a universal stress sensor for graphene and carbon fibers. Nature Communications, 2(1), 1-7.
  • 44. Lee, C., Wei, X., Kysar, J. W., & Hone, J. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321(5887), 385-388.
  • 45. Hempel, M., Nezich, D., Kong, J., & Hofmann, M. (2012). A novel class of strain gauges based on layered percolative films of 2D materials. Nano Letters, 12(11), 5714-5718.
  • 46. Smith, A. D., Niklaus, F., Paussa, A., Vaziri, S., Fischer, A. C., Sterner, M., & Lemme, M. C. (2013). Electromechanical piezoresistive sensing in suspended graphene membranes. Nano Letters, 13(7), 3237-3242.
  • 47. Zhu, Shou-En, et al. Graphene based piezoresistive pressure sensor. Applied Physics Letters 102.16 2013 161904..
  • 48. Liu, H., Xin, Y., Bisoyi, H. K., Peng, Y., Zhang, J., & Li, Q. (2021). Stimuli‐Driven Insulator–Conductor Transition in a Flexible Polymer Composite Enabled by Biphasic Liquid Metal. Advanced Materials, 2104634.
  • 49. Yao, H. B., Ge, J., Wang, C. F., Wang, X., Hu, W., Zheng, Z. J., & Yu, S. H. (2013). A flexible and highly pressure‐sensitive graphene–polyurethane sponge based on fractured microstructure design. Advanced Materials, 25(46), 6692-6698.
  • 50. Bae, S. H., Kahya, O., Sharma, B. K., Kwon, J., Cho, H. J., Ozyilmaz, B., & Ahn, J. H. (2013). Graphene-P (VDF-TrFE) multilayer film for flexible applications. ACS Nano, 7(4), 3130-3138.
  • 51. Fu, X. W., Liao, Z. M., Zhou, J. X., Zhou, Y. B., Wu, H. C., Zhang, R., ... & Yu, D. (2011). Strain dependent resistance in chemical vapor deposition grown graphene. Applied Physics Letters, 99(21), 213107.
  • 52. Wang, Y., Yang, R., Shi, Z., Zhang, L., Shi, D., Wang, E., & Zhang, G. (2011). Super-elastic graphene ripples for flexible strain sensors. ACS Nano, 5(5), 3645-3650.
  • 53. Amjadi, M., Kyung, K. U., Park, I., & Sitti, M. (2016). Stretchable, skin‐mountable, and wearable strain sensors and their potential applications: a review. Advanced Functional Materials, 26(11), 1678-1698.
  • 54. So, J. H., & Dickey, M. D. (2011). Inherently aligned microfluidic electrodes composed of liquid metal. Lab on a Chip, 11(5), 905-911.
  • 55. Kim, H. J., Son, C., & Ziaie, B. (2008). A multiaxial stretchable interconnect using liquid-alloy-filled elastomeric microchannels. Applied Physics Letters, 92(1), 011904.
  • 56. Hu, H., Shaikh, K., & Liu, C. (2007, October). Super flexible sensor skin using liquid metal as interconnect. In SENSORS, 2007 IEEE (pp. 815-817).
  • 57. Yang, H., Lightner, C. R., & Dong, L. (2012). Light-emitting coaxial nanofibers. ACS Nano, 6(1), 622-628.
  • 58. Jobs, M., Hjort, K., Rydberg, A., & Wu, Z. (2013). A tunable spherical cap microfluidic electrically small antenna. Small, 9(19), 3230-3234.
  • 59. Liu, P., Yang, S., Wang, X., Yang, M., Song, J., & Dong, L. (2016). Directivity-reconfigurable wideband two-arm spiral antenna. IEEE Antennas and Wireless Propagation Letters, 16, 66-69.
  • 60. Yang, S., Liu, P., Yang, M., Wang, Q., Song, J., & Dong, L. (2016). From flexible and stretchable meta-atom to metamaterial: A wearable microwave meta-skin with tunable frequency selective and cloaking effects. Scientific Reports, 6(1), 1-8.
  • 61. Hernandez, G. A., Martinez, D., Ellis, C., Palmer, M., & Hamilton, M. C. (2013, May). Through Si vias using liquid metal conductors for re-workable 3D electronics. In 2013 IEEE 63rd Electronic Components and Technology Conference (pp. 1401-1406).
  • 62. Kramer, R. K., Majidi, C., & Wood, R. J. (2013). Masked deposition of gallium‐indium alloys for liquid‐embedded elastomer conductors. Advanced Functional Materials, 23(42), 5292-5296.
  • 63. Novoselov, K. S., Jiang, D., Schedin, F., Booth, T. J., Khotkevich, V. V., Morozov, S. V., & Geim, A. K. (2005). Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences, 102(30), 10451-10453.
  • 64. Han, M. Y., Özyilmaz, B., Zhang, Y., & Kim, P. (2007). Energy band-gap engineering of graphene nanoribbons. Physical Review Letters, 98(20), 206805.
  • 65. Nakada, K., Fujita, M., Dresselhaus, G., & Dresselhaus, M. S. (1996). Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Physical Review B, 54(24), 17954.
  • 66. van Gastel, R., N’Diaye, A. T., Wall, D., Coraux, J., Busse, C., Buckanie, N. M., ... & Poelsema, B. (2009). Selecting a single orientation for millimeter sized graphene sheets. Applied Physics Letters, 95(12), 121901.
  • 67. Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., & Ruoff, R. S. (2009). Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 324(5932), 1312-1314.
  • 68. Yang, S., Wang, C., Ataca, C., Li, Y., Chen, H., Cai, H., & Tongay, S. (2016). Self-driven photodetector and ambipolar transistor in atomically thin GaTe-MoS2 p–n vdW heterostructure. ACS Applied Materials & Interfaces, 8(4), 2533-2539.
  • 69. Wang, F., Wang, Z., Xu, K., Wang, F., Wang, Q., Huang, Y., & He, J. (2015). Tunable GaTe-MoS2 van der Waals p–n junctions with novel optoelectronic performance. Nano Letters, 15(11), 7558-7566.
  • 70. Su, C., Zhao, X. (2021). A uniformly first-order accurate method for Klein-Gordon-Zakharov system in simultaneous high-plasma-frequency and subsonic limit regime. Journal of Computational Physics, 428, 110064.
  • 71. Shenoy, U. S., Gupta, U., Narang, D. S., Late, D. J., Waghmare, U. V., & Rao, C. N. R. (2016). Electronic structure and properties of layered gallium telluride. Chemical Physics Letters, 651, 148-154.
  • 72. Susoma, J., Karvonen, L., Säynätjoki, A., Mehravar, S., Norwood, R. A., Peyghambarian, N., ... & Riikonen, J. (2016). Second and third harmonic generation in few-layer gallium telluride characterized by multiphoton microscopy. Applied Physics Letters, 108(7), 073103.
  • 73. Yang, S., Cai, H., Chen, B., Ko, C., Özçelik, V. O., Ogletree, D. F., & Tongay, S. (2017). Environmental stability of 2D anisotropic tellurium containing nanomaterials: anisotropic to isotropic transition. Nanoscale, 9(34), 12288-12294.
  • 74. French, S. J., SAUNDERS, D. J., & INGLE, G. W. (2002). The system gallium-indium. The Journal of Physical Chemistry, 42(2), 265-274.
  • 75. Kim, T. W., Wang, G., Lee, H., & Lee, T. (2007). Statistical analysis of electronic properties of alkanethiols in metal–molecule–metal junctions. Nanotechnology, 18(31), 315204.
  • 76. Beebe, J. M., & Kushmerick, J. G. (2007). Nanoscale switch elements from self-assembled monolayers on silver. Applied Physics Letters, 90(8), 083117.
  • 77. Al-Dhahebi, A. M., Gopinath, S. C. B., & Saheed, M. S. M. (2020). Graphene impregnated electrospun nanofiber sensing materials: A comprehensive overview on bridging laboratory set-up to industry. Nano Convergence, 7(1), 1-23
  • 78. Dickey, M. D., Chiechi, R. C., Larsen, R. J., Weiss, E. A., Weitz, D. A., & Whitesides, G. M. (2008). Eutectic gallium‐indium (EGaIn): a liquid metal alloy for the formation of stable structures in microchannels at room temperature. Advanced Functional Materials, 18(7), 1097-1104.
  • 79. Sargolzaeiaval, Y., Ramesh, V. P., Neumann, T. V., Miles, R., Dickey, M. D., & Öztürk, M. C. (2019). High thermal conductivity silicone elastomer doped with graphene nanoplatelets and eutectic gain liquid metal alloy. ECS Journal of Solid State Science and Technology, 8(6), P357.
  • 80. Neumann, T. V., Kara, B., Sargolzaeiaval, Y., Im, S., Ma, J., Yang, J., ... & Dickey, M. D. (2021). Aerosol Spray Deposition of Liquid Metal and Elastomer Coatings for Rapid Processing of Stretchable Electronics. Micromachines, 12(2), 146.
  • 81. Saborio, M. G., Cai, S., Tang, J., Ghasemian, M. B., Mayyas, M., Han, J., & Kalantar‐Zadeh, K. (2020). Liquid Metal Droplet and Graphene Co‐Fillers for Electrically Conductive Flexible Composites. Small, 16(12), 1903753.
  • 82. Wang, T., Zhao, Q., Miao, Y., Ma, F., Xie, Y., & Jie, W. (2018). Lattice vibration of layered GaTe single crystals. Crystals, 8(2), 74.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cdb41fa1-8eff-4bd9-8c71-465a6b2f2570
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.