PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

CFD analysis of the fluid particles distribution by means of aviation technique

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Analizy CFD rozkładu kropel rozprzestrzenianych za pomocą statku powietrznego
Języki publikacji
EN
Abstrakty
EN
The article describes a computational study, using CFD models, of droplet spray dispersal in the wake of a ‘Turbo Kruk’ airplane up to 500 m downstream. The CFD Reynolds-averaged Navier-Stokes (RANS) models use a Lagrangian (droplet phase) and Eulerian (fluid phase) procedure to predict the droplet trajectories trough the turbulent aircraft wake. The methods described in the work have the potential to improve current models for aerial spraying and will help in the development of new spraying procedures. In this study, the CFD models are used to describe the phenomenon of sprays released from atomizers mounted on the plane. A parametric study of the aircraft model examines the effects of crosswind on the aircraft’s vortex structures and the resulting droplet trajectories. The study shows, that such influence is underestimated in the current models. A comparison of the present results to AGDISP predictions is provided.
PL
W artykule opisano analizy numeryczne, wykorzystujące współczesne metody CFD, do badania przestrzennego rozkładu kropel cieczy, rozpylonych w polu prędkości samolotu ‘Turbo Kruk’ w odległości do 500 m za statkiem powietrznym. Wykorzystano równania RANS, celem rozwiązania zagadnienia Lagrangea trajektorii kropel (dyskretnych cząstek) w powietrzu (płyn), rozumianym jako sturbulizowany ślad aerodynamiczny samolotu. Wybrana i opisana metoda w pracy posiada ogromny potencjał, możliwy do wykorzystania w celu ulepszenia obecnych, obowiązujących modeli opryskiwania z samolotu i ustalenia lepszych procedur technologicznych. W pracy wykorzystano metody CFD do opisania i analizy zjawiska rozpylania kropel przez atomizery, zamocowane na płatowcu. Podjęto problem wpływu wiatru bocznego na struktury wirowe, generowane lecącym statkiem powietrznym, a przez to na trajektorie kropel i rozkład przestrzenny masy oprysku. Pokazano, że taki wpływ jest niedoszacowany według obecnych, standardowych modeli, przede wszystkim poprzez porównanie do wyników uzyskanych w oparciu o model AGDISP.
Rocznik
Strony
66--92
Opis fizyczny
Bibliogr. 48 poz., rys., tab., wykr., wzory
Twórcy
autor
  • Polish Air Force Academy, ul. Dywizjonu 303 35, 08-521 Dęblin, Poland
  • Centre of New Technologies, Institute of Aviation, al. Krakowska 110/114, 02-256 Warsaw, Poland
  • Design Analysis & Calculation Group, PZL „Warszawa–Okęcie” S. A. Airbus Defence & Space, al. Krakowska 110/114, 02-256 Warsaw, Poland
Bibliografia
  • [1] Ashley, H. and Landahl, M. T., 1965, Aerodynamics of Wing and Bodies, Reading Addison-Wesley Publishing Co.
  • [2] Atias, M. and Weihs, D., 1984, “Motion of Aircraft Trailing Vortices Near the Ground”, Journal of Aircraft, 21(10), pp. 783-786.
  • [3] Bache, D. H. and Sayer, W. J. D., 1975, “Transport of Aerial Spray. A Model of Aerial Dispersion”, Agricultural Meteorology, 15, pp. 257-271.
  • [4] Bilanin, A. J., Teske, M. E. and Barry, J. W., 1989, “AgDisp: the Aircraft Spray Dispersion Model, Code Development and Experimental Validation”, Trans. ASAE, 32, pp. 327-334.
  • [5] Bird, S. L., Perry, S. G., Ray, S. L. and Teske, M. E., 2002, “Evaluation of the AgDISP Aerial Spray Algorithms in the AgDRIFT Model”, Environ. Toxicol. Chem., 21, pp. 672-681.
  • [6] Boothroyd, R. G., 1971, Flowing Gas-Solid Suspensions , London: Chapman and Hall.
  • [7] Bragg, M. B., 1986, “A Numerical Simulation of the Dispersal of Liquids from Aircraft”, Trans. of the ASAE, 29, pp. 10-15.
  • [8] SAS IP, 2013, ANSYS Fluent Theory Guide, ANSYS.
  • [9] Cramer, H. E., Bjorklund, J. R., Record, E. A., Dumbauld, R. K., Swanson, R. N., Faulkner, J. E. and Tingle, A. G., 1972, “Development of Dosage Models and Concepts”, Report DTC-TR-72-609-1. Dugway, Utah: U. S. Army, Dugway Proving Ground.
  • [10] Деревянко, В. С., 1974, Влияние аэродинамических возмущений на процессы авиационного опыливания и опрыскивания, Москва: Tранспорт.
  • [11] Duan, B., Yenodol, W. G. and Mierzejewski, K., 1992, “Statistical Comparison of the AGDISP Model with Deposit Data”, Atmos. Environ. A, 26(9), pp. 1635-1642.
  • [12] Dumbauld, R. K., Bjorklund, J. R. and Saterlie, S. F., 1980, “Computer Models for Prediction Aircraft Spray Dispersion and Deposition Above and Within Forest Canopies: User’s Manual for the FSCBG Computer Program”, Report 80-11. Davis, Cal.: USDA Forest Service.
  • [13] Dziubiński, A., Jaśkowski, P., Seredyn, T., 2016 “CFD Analysis of Agricultural Aircraft Aerodynamic Characteristics”, Transactions of the Institute of Aviation, No. 4(245), pp. 321-337.
  • [14] Dziubiński, A., Stalewski, W. and Żółtak, J., 2008, “Examples of Fluent Applications in Helicopter Flight Safety Analysis” (in Polish: „Przykłady zastosowania pakietu Fluent w analizach bezpieczeństwa lotu śmigłowców”, Transactions of the Institute of Aviation, No. 194-195, pp. 146-157.
  • [15] ESDU No. 72026, 1972, Characteristics of the Wind Speed in the Lower of the Atmosphere Near the Ground: Strong Winds, London: Neutral Atmosphere.
  • [16] Frost, W. and Huang, K. H., 1981, “Monte Carlo Model for Aircraft Applications of Pesticides”, ASAE Paper No. 811507., St. Joseph, Mich.: ASAE.
  • [17] Gaidos, R. E., Patel, M. R., Valcore, D. L. and Fears, R. D., 1990, “Prediction of Spray Drift Deposition from Aerial Applications of Pesticides”, ASAE Paper No. AA90007., St. Joseph, Mich.: ASAE/NAAA.
  • [18] Harvey, J. K. and Perry, F. J., 1971, “Flow Field Produced by Trailing Vortices in the Vicinity of Ground”, AIAA Journal, 9(8), pp. 1659-1660.
  • [19] Hewitt, A. J., 2001, “Drift Filtration by Natural and Artificial Collectors: A Literature Review”, Stewart Agricultural Research Services Inc.
  • [20] Himel, C. M., Loats, H. and Bailey, G. W., 1990, “Pesticide Sources to the Soil and Principles of Spray Physics”, Madison: SSSA Book Series 2. Wisc.: SSSA, pp. 7-50.
  • [21] Kamiński, S., 1970, „Problems of Spray Drift in Plant Protection Treatments Performed by Aviation Technique” (in Polish: „Analiza parametrów charakteryzujących rozpylanie ciekłych środków ochrony roślin”), Report 4.31.15, Institute of Aviation, Warszawa.
  • [22] Leonard, A., 1980, “Vortex Methods for Slow Simulation”, Journal of Computational Physics, No. 37, pp. 289-335.
  • [23] Łusiak, T., Dziubiński, A. and Szumański, K., 2009, “Interference between helicopter and its surroundings, experimental and numerical analysis”, TASK QURTAERLY, No. 13(4), p. 379-392.
  • [24] Miranda, L. R., Elliot, R. D. and Baker, W. M., 1977, “A Generalized Vortex Lattice Method for Subsonic and Supersonic Flow Applications”, NASA CR 2865.
  • [25] Moore, D. W., 1974, “A Numerical Study of the Roll-up of a Finite Vortex Sheet”, Journal of Fluid Mechanics, No. 63(2), pp. 225-235.
  • [26] Pietruszka, J., 1987, „Simulation of Spraying Performer by M18 Aircraft” (in Polish: „Symulacja procesu opryskiwania wykonanego z samolotu M18”), Mielec: Sprawozdanie nr OLO-4/99/87.OBR SK – not published.
  • [27] Pietruszka, J., 1987, “Computer Simulation of Spraying from Aircraft” (in Polish: „Symulacja komputerowa procesu opryskiwania z samolotu”), Ph. D. Thesis, Politechnika Warszawska.
  • [28] Pietruszka, J. and Rowiński, R. S., 2004, “Computer Simulation of Aerial Spraying” Annual Review of gricultural Engineering, No. 3(1), pp. 125-140.
  • [29] Ranz, W. E. and Marschall, W. R., 1952, “Evaporation from Drops”, Chemical Engineering Progress, 48(3), pp. 141-146 and Chemical Engineering Progress, 48(4), pp. 173-180.
  • [30] Reed, W. H., 1954, “An Analytical Study of the Effect of Airplane Wake on the Lateral Dispersion of Aerial Sprays”, NACA Report 1196.
  • [31] Rowiński, R. S., 1993, “Problems of Spray Drift in Plant Protection Using Aviation Techniques”, Acta Acad. Agricult. Techn. Olst. Aed., No. 16, pp. 171-195.
  • [32] Rowiński, R. S. and Ferenc, M., 2000, “Some Problems Concerned with the Theory of Drift”, Annual Review of Agricultural Engineering, No. 2(1), pp. 148-156.
  • [33] Ryan, S. D., Gerber, A. D. and Holloway, A. G. L., 2013, “A computational Study on Spray Dispersal in the Wake of an Aircraft”, Trans. ASABE, No. 56(3), pp. 847-868.
  • [34] Saputro, S. and Smith, D. B., 1990, “Expert System for Aerial Spray Drift”, ASAE Paper No. 901018. St. Joseph, Mich.: ASAE.
  • [35] Seredyn, T.P., 2014, “Experimental Investigations of a Drifting Cloud of Droplets Dispersed from Aircraft”, Archive of Mechanical Engineering, No. 3, pp. 393-407.
  • [36] Sobczak, K., 2008, „CFD Modeling of Chosen Helicopter Flight Phases in Fluent” (in Polish: „Modelowanie wybranych przypadków lotu śmigłowca z wykorzystaniem oprogramowania Fluent”), Transactions of the Institute of Aviation, No. 194-195, pp. 158-165.
  • [37] Teske, M. E., Bird, S .L., Esterly, D. M., Curbishley, T. B., Ray, S. L. and Perry, S. G., 2002, “AgDRIFT: a Model for Estimating Near-field Spray Drift from Aerial Applications”, Environ. Toxicol. and Chem., No. 21(3), pp. 659-671.
  • [38] Teske, M. E. and Thistle, H. W., 2003, “Release Height and Far-Field Limits of Lagrangian Aerial Spray Models”, Trans. ASAE No. 46(4), pp. 977-983.
  • [39] Teske, M. E., Thistle, H. W. and Ice, G. G., 2003, “Technical Advances in Modeling Aerially Applied Sprays”, Trans. ASAE No. 46(4), pp. 985-996.
  • [40] Teske, M. E., Thistle, H. W. and Londergan, R. J., 2011a, “Modification of Droplet Evaporation in the Simulation of Fine Droplet Motion Using AGDISP”, Trans. ASAE No. 54(2), pp. 417-421.
  • [41] Teske, M. E., Thistle, H. W., Schou, W. C., Miller, P. C. H., Strager, J. M., Richardson, B., Butler, M. C., Barry, J. W., Twardus, D. B. and Thompson, D. G., 2011b, “A Review of Computer Models for Pesticide Deposition Prediction”, Trans. ASAE No. 54(3), pp. 789-801.
  • [42] Trayford, R. S. and Welch, L. W., 1977, “Aerial Spraying: A Simulation of Factors Influencing the Distribution and Recovery of Liquid Droplets”, Journal of Agricultural Engineering Research, No. 22, pp. 183-196.
  • [43] Wallace, D. J., Picot, J. J. C. and Chapman, T. J., 1995, “A Numerical Model for Forestry Aerial Spraying”, Agric. Forestry Meteorology, No. 76, pp. 19-40.
  • [44] Wickens, R. H., 1977, “Calculation of Wake Vortex Trajectories for Low Flying Spraying Aircraft”, Canada: National Aero Report LTR-LA-215 Nat. Res. Council.
  • [45] Williamson, R. E. and Threadgill, E. D., 1974, “A Simulation for the Dynamics of Evaporating Spray Droplets in Agricultural Spraying”, Trans. ASAE, No. 17(2), pp. 254-261.
  • [46] http://www.microngroup.com
  • [47] http://www.jetphotos.com
  • [48] http://www.epa.gov
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cdb1ea29-fe33-4a49-95b8-e170945f8a14
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.