PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Measurement point density and measurement methods in determining the geometric imperfections of shell surfaces

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In geodetic measurements of deformations in shell cooling towers, an important factor is to optimize the number of points representing the exterior surface of the shell. The conducted analyses of damage to such structures proved that cooling towers exhibited shell deformation consisting of irregular vertical waves (three concavities and two convexities), as well as seven horizontal waves. On this basis, it is claimed that, in accordance with the Shannon theorem, the correct representation of the generated waves requires the measurement of the cooling tower shell in a minimum of 12 vertical and 14 horizontal sections. Such density of the points may not be sufficient to represent local imperfections of the shell. The article presents the results of test measurements and their analysis, which were conducted to verify the assumptions as to the optimal number of measurement points for the shell of a cooling tower. The evaluation was based on a comparative analysis of the data obtained by the Terrestrial Laser Scanning (TLS) method, creating a very detailed model of geometric imperfections in an actual cooling tower with a height of 100 m. Based on the data obtained by the TLS method, point grids of various density were generated. An additional measurement of the cooling tower shell deformation was performed using a precise electronic total station with reflectorless measurement option. Therefore, it was possible to assess the accuracy of measurements by laser scanning in relation to measurements obtained by reflectorless total stations.
Rocznik
Tom
Strony
19--28
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Engineering Surveying and Civil Engineering, Faculty of Mining Surveying and Environmental Engineering, AGH University of Science and Technology, 30 Mickiewicza Av, 30-059 Krakow, Poland
autor
  • Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, 30 Mickiewicza Av, 30-059 Krakow, Poland
autor
  • Department of Engineering Surveying and Civil Engineering, Faculty of Mining Surveying and Environmental Engineering, AGH University of Science and Technology, 30 Mickiewicza Av, 30-059 Krakow, Poland
Bibliografia
  • [1] Busch, D., Harte, R., Krätzig, W. B., and Montag, U. (2002). New natural draft cooling tower of 200 m of height. Engineering Structures, 24(12):1509–1521, doi:10.1016/S0141-0296(02)00082-2.
  • [2] Camp, G., Carreaud, P., and Lançon, H. (2013). Large structures: which solutions for health monitoring? In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XXIV ICIPA Symposium, volume 5/W2, pages 137–141.
  • [3] Chisholm, N. (1977). Photogrammetry for cooling tower shape surveys. The Photogrammetric Record, 9(50):173–191, doi:10.1111/j.1477-9730.1977.tb00080.x.
  • [4] Davis, J. C. (2002). Statistical and data analysis in geology. John Wiley & Sons.
  • [5] Gigiel, J. M. (1993). An approach to optimal space density of measurements of cooling tower shells. Archives of Civil Engineering, 2:179–191.
  • [6] Ding, X., Coleman, R., and Rotter, J. M. (1996). Technique for precise measurement of large-scale silos and tanks. Journal of Surveying Engineering, 122(1):14–25, doi:10.1061/(ASCE)0733-9453(1996)122:1(14).
  • [7] Ghilani, C. D. and Wolf, J. M. (2006). Adjustment computations. John Wiley & Sons.
  • [8] Gigiel, J. M. (1998). Synteza uwarunkowań konstrukcyjnowytrzymałościowo-reologicznych dla pomiarowej rejestracji stanu chłodni kominowej (Synthesis of structural conditions, strength and rheological for measurement registration of cooling tower). Silesian University of Technology, Gliwice, Poland.
  • [9] Hill, G. B., Pring, E. J., and Osborn, P. D. (1990). Cooling towers: principles and practice. Butterworth-Heinemann.
  • [10] Ioannidis, C., Valani, A., Georgopoulos, A., and Tsiligiris, E. (2006). 3d model generation for deformation analysis using laser scanning data of a cooling tower. In Proc. of 3rd IAG /12th FIG Symposium, International Federation of Surveyors, Baden, volume 3, pages 22–24.
  • [11] Isaaks, E. H. and Srivastava, M. R. (1989). Applied geostatistics. Oxford University Press New York.
  • [12] Jasińska, E. and Preweda, E. (2004). A few comments on determining the shapes of hyperboloid cooling towers by the means of ambient tangents method. Geodezja, 10(1):19–29.
  • [13] Jin, L. (2008). A Review of Spatial Interpolation Methods for Environmental Scientists. Department of Resources, Energy and Tourism, Geoscience Australia.
  • [14] Lambrou, E. and Pantazis, G. (2010). Evaluation of the credibility of reflectorless distance measurement. Journal of Surveying Engineering, 136(4):165–171, doi:10.1061/(ASCE)SU.1943-5428.0000029.
  • [15] Lancon, H. and Piot, S. (2012). New tools for the monitoring of cooling towers. In Proc., 6th European Workshop on Structural Health Monitoring, German Society for Nondestructive Testing, Dresden, Germany.
  • [16] Li, J. and Heap, A. D. (2011). A review of comparative studies of spatial interpolation methods in environmental sciences: performance and impact factors. Ecological Informatics, 6(3-4):228–241, doi:10.1016/j.ecoinf.2010.12.003.
  • [17] Li, J. and Heap, A. D. (2014). Spatial interpolation methods applied in the environmental sciences: A review. Environmental Modelling & Software, 53:173–189, doi:10.1016/j.envsoft.2013.12.008.
  • [18] Shortis, M. R. and Fraser, C. S. (1991). Current trends in close-range optical 3d measurement for industrial and engineering applications. Survey Review, 31(242):188–200, doi:10.1179/sre.1991.31.242.188.
  • [19] Smith, S. W. (1999). The scientist and engineer’s guide to digital signal processing. California Technical Pub. San Diego.
  • [20] Woźniak, M. (2008). Monitoring of construction shape changes using reflectorless techniques. Reports on Geodesy, 84(1):93–97.
  • [21] Woźniak, M. and Woźniak, K. (2011). Geodetic measuring methods and shape estimation of concrete thin shell surface. Reports on Geodesy, 91(2):81–88.
  • [22] Zwillinger, D. (2002). CRC standard mathematical tables and formulae. CRC press.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cdb1d661-4413-495e-880a-7d1ea1033081
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.