Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
3D polymer-based printers have become easily accessible to the public. Usually, the technology used by these 3D printers is Fused Deposition Modelling (FDM). The majority of these 3D printers mainly use acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) to fabricate 3D objects. In order for the printed parts to be useful for specific applications, the mechanical properties of the printed parts must be known. The aim of this study is to determine the tensile strength and elastic modulus of printed materials in polylactic acid (PLA) according to three important printing parameters such as deposition angle, extruder temperature and printing speed. The central composite design (CCD) was used to reduce the number of tensile test experiments. The obtained results show that the mechanical properties of printed parts depend on printing parameters. Empirical models relating response and process parameters are developed. The analysis of variance (ANOVA) was used to test the validity of models relating response and printing parameters. The optimal printing parameters are determined for the desired mechanical properties.
Czasopismo
Rocznik
Tom
Strony
895--907
Opis fizyczny
Bibliogr. 28 poz., il., wykr.
Twórcy
autor
- Laboratory of Sustainable Development,Department of Physics, Faculty of Science and Technology, Sultan Moulay Slimane University, Mghila, B.P : 523, Beni Mellal, Morocco
autor
- Laboratory of Sustainable Development,Department of Physics, Faculty of Science and Technology, Sultan Moulay Slimane University, Mghila, B.P : 523, Beni Mellal, Morocco
autor
- Team of Applied Physics and New Technologies, Department of Physics, Polydisciplinary Faculty, Sultan Moulay Slimane University, Beni Mellal, Morocco, Mghila, B.P.: 592, Beni Mellal, Morocco
Bibliografia
- [1] Mansour, S. and Hague, R.: Impact of rapid manufacturing on design for manufacture for injection moulding, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 217(4), 453-461, 2003.
- [2] Goyanes, A., Wang, J., Buanz, A., Martnez-Pacheco, R., Telford, R., Gaisford, S. and Basit, A.W.: 3D printing of medicines: engineering novel oral devices with unique design and drug release characteristics, Molecular Pharmaceutics, 12(11), 4077-4084, 2015.
- [3] Dimitrov, D., Schreve, K. and De Beer, N.: Advances in three dimensional printing-state of the art and future perspectives, Rapid Prototyping Journal, 12(3), 136-147, 2006.
- [4] Kruth, J.-P., Levy, G., Klocke, F. and Childs, T.: Consolidation phenomena in laser and powder-bed based layered manufacturing, CIRP Annals-Manufacturing Technology, 56(2), 730-759, 2007.
- [5] Melchels, F.P., Feijen, J. and Grijpma, D.W.: A poly (D, L-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography, Biomaterials, 30(23), 3801-3809, 2009.
- [6] Ford, S. and Despeisse, M.: Additive manufacturing and sustainability: an exploratory study of the advantages and challenges, Journal of Cleaner Production, 137, 1573-1587, 2016.
- [7] Jones, R., Haufe, P., Sells, E., Iravani, P., Olliver, V., Palmer, C. and Bowyer, A.: RepRap - the replicating rapid prototyper, Robotica, 29(1), 177-191, 2011.
- [8] Pearce, J.M.: Open-source lab: how to build your own hardware and reduce research costs, Newnes, 2013.
- [9] Sugavaneswaran, M. and Arumaikkannu, G.: Modelling for randomly oriented multi material additive manufacturing component and its fabrication, Materials & Design, 54, 779-785, 2014.
- [10] Drumright, R.E., Gruber, P.R. and Henton, D.E.: Polylactic acid technology, Advanced Materials, 12(23), 1841-1846, 2000.
- [11] Carothers, W.H., Dorough, G.L. and Natta, F.J.V.: Studies of Polymerization and Ring Formation. X. the Reversible Polymerization of Six-Membered Cyclic Esters, Journal of the American Chemical Society, 54(2), 761-772, 1932.
- [12] Lasprilla, A.J., Martinez, G.A., Lunelli, B.H., Jardini, A.L. and Maciel Filho, R.: Poly-lactic acid synthesis for application in biomedical devices - A review, Biotechnology Advances, 30(1), 321-328, 2012.
- [13] Scaffaro, R., Lopresti, F., Botta, L., Rigogliuso, S. and Ghersi, G.: Preparation of three-layered porous PLA/PEG scaffold: relationship between morphology, mechanical behavior and cell permeability, Journal of the Mechanical Behavior of Biomedical Materials, 54, 8-20, 2016.
- [14] Montjovent, M.-O., Mark, S., Mathieu, L., Scaletta, C., Scherberich, A., Delabarde, C., Zambelli, P.-Y., Bourban, P.-E., Applegate, L. A. and Pioletti, D. P.: Human fetal bone cells associated with ceramic reinforced PLA scaffolds for tissue engineering, Bone, 42(3), 554-564, 2008.
- [15] Arrieta, M. P., López, J., Hernández, A. and Ray on, E.: Ternary PLA-PHB-Limonene blends intended for biodegradable food packaging applications, European Polymer Journal, 50, 255-270, 2014.
- [16] Wang, L.-F., Rhim, J.-W. and Hong, S.-I.: Preparation of poly(lactide)/poly(butylene adipate-co-terephthalate) blend films using a solvent casting method and their food packaging application, LWT - Food Science and Technology, 68, 454-461, 2016.
- [17] Murariu, M. and Dubois, P.: PLA composites: From production to properties, Advanced Drug Delivery Reviews, 107, 17-46, 2016.
- [18] Heidari, B.S., Oliaei, E., Shayesteh, H., Davachi, S.M., Hejazi, I., Seyfi, J., Bahrami, M. and Rashedi, H.: Simulation of mechanical behavior and optimiza-tion of simulated injection molding process for PLA based antibacterial composite and nanocomposite bone screws using central composite design, Journal of the Mechanical Behavior of Biomedical Materials, 65, 160-176, 2017.
- [19] Lu, L., Peter, S.J., Lyman, M.D., Lai, H.-L., Leite, S.M., Tamada, J.A., Uyama, S., Vacanti, J.P., Langer, R. and Mikos, A.G.: In vitro and in vivo degradation of porous poly (DL-lactic-co-glycolic acid) foams, Biomaterials, 21(18), 1837-1845, 2000.
- [20] Singh, S., Ramakrishna, S. and Singh, R.: Material issues in additive manufacturing: A review, Journal of Manufacturing Processes, 25, 185-200, 2017.
- [21] Hamad, K., Kaseem, M., Yang, H., Deri, F. and Ko, Y.: Properties and medical applications of polylactic acid: A review, Express Polymer Letters, 9(5), 435-455, 2015.
- [22] Olivieri, R., Di Maio, L., Scarfato, P. and Incarnato, L.: Preparation and characterization of biodegradable PLA/organosilylated clay nanocomposites, in: VIII International Conference on \Times of Polymers and Composites": From Aerospace to Nanotechnology, 020102, 2016.
- [23] Inkinen, S., Hakkarainen, M., Albertsson, A.-C. and Sodergard, A.: From lactic acid to poly (lactic acid)(PLA): characterization and analysis of PLA and its precursors, Biomacromolecules, 12(3), 523-532, 2011.
- [24] Van de Velde, K. and Kiekens, P.: Biopolymers: overview of several properties and consequences on their applications, Polymer Testing, 21(4), 433-442, 2002.
- [25] Farah, S., Anderson, D. G. and Langer, R.: Physical and mechanical properties of PLA, and their functions in widespread applications | A comprehensive review, Advanced Drug Delivery Reviews, 107, 367-392, 2016.
- [26] EN ISO 527-2: 1996 Test specimens for determination of tensile properties. http://www.thingiverse.com/thing:190386.
- [27] Ahn, S.-H., Montero, M., Odell, D., Roundy, S. and Wright, P. K.: Anisotropic material properties of fused deposition modeling ABS, Rapid Prototyping Journal, 8(4), 248-257, 2002.
- [28] Montgomery, D.C.: Design and analysis of experiments, John Wiley & Sons, 2017.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cdb032d3-bbe7-4f0f-81f6-c04c7cefe565