PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of flax fibers addition on the mechanical properties and biodegradability of biocomposites based on thermoplastic starch

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The research was intended to develop a biocomposite as an alternative biodegradable material, for the production of, e.g., disposable utensils. The author’s tested thermoplastic maize starch, both without additives and with the addition of crumbled flax fiber in the share of 10, 20 and 30 wt%. The plasticizer added was technical glycerin and the samples were produced by a single-screw extruder. The mechanical strength tests were performed, including the impact tensile test and three-point bending flexural test. Afterwards, the samples were tested for biodegradability under anaerobic conditions. The methane fermentation process was carried in a laboratory bioreactor under thermophilic conditions with constant mixing of the batch. All samples proved to be highly susceptible to biodegradation during the experiment, regardless of the flax fiber share. The biogas potential was about 600 ml·g-1, and the methane concentration in biogas ranged from 66.8 to 69.6%. It was found, that the biocomposites can be almost completely utilized in bioreactors during the biodegradation process. The energy recovery in the decomposition process with the generation of significant amount of methane constitutes an additional benefit.
Rocznik
Strony
74--82
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr.
Twórcy
  • Faculty of Environmental Engineering, Lublin University of Technology, Lublin, Poland
  • Faculty of Mechanical Engineering, Lublin University of Technology, Lublin, Poland
  • Faculty of Environmental Engineering, Lublin University of Technology, Lublin, Poland
  • Department of Civil Environmental and Architectural Engineering, University of Padova, Italy
  • Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Poland
  • Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Poland
  • Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Poland
Bibliografia
  • 1. Averous, L. & Boquillon, N. (2004). Biocomposites based on plasticized starch: thermal and mechanical behaviours, Carbohydrate Polymers, 56, 2, pp. 111-122.
  • 2. Banks, C.J., Chesshire, M., Heaven, S. & Arnold, R. (2011). Anaerobic digestion of source-segregated domestic food waste: Performance assessment by mass and energy balance, Bioresource Technology, 102, 2, pp. 612-620.
  • 3. Battegazzore, D., Bocchini, S. & Frache, A. (2016). Thermomechanical improvement of glycerol plasticized maize starch with high loading of cellulose, flax and talc fillers, Polymer International, 65, 8, pp. 955-962.
  • 4. Bootklad, M. & Kaewtatip, K. (2013). Biodegradation of thermoplastic starch/eggshell powder composites, Carbohydrate Polymers, 97, 2, pp. 315-320.
  • 5. Directive EU 2019/904 of the European Parliament and of the Council of 5 June 2019 on the reduction of the impact of certain plastic products on the environment.
  • 6. Feuilloley, P., César, G., Benguigui, L., Grohens, Y., Pillin, I., Bewa, H., Lefaux, S. & Jamal, M. (2005). Degradation of polyethylene designed for agricultural purposes, Journal of Polymers and the Environment, 13, 4, pp. 349-355.
  • 7. Foulk, J.A., Chao, W.Y., Akin, D.E., Dodd, R.B. & Layton, P.A. (2006). Analysis of flax and cotton fiber fabric blends and recycled polyethylene composites, Journal of Polymers and the Environment, 14, 1, pp. 15-25.
  • 8. Gurunathan, T., Mohanty, S. & Nayak, S.K. (2015). A review of the recent developments in biocomposites based on natural fibres and their application perspectives, Composites Part A: Applied Science and Manufacturing, 77, pp. 1-25.
  • 9. Haug, R.T. (1993). The practical handbook of compost engineering. Taylor & Francis CRC Press, pp. 752.
  • 10. Hietala, M., Mathew, A.P. & Oksman, K. (2013). Bionanocomposites of thermoplastic starch and cellulose nanofibers manufactured using twin-screw extrusion, European Polymer Journal, 49, 4, pp. 950-956.
  • 11. Ibrahim, H., Farag, M., Megahed, H. & Mehanny, S. (2014). Characteristics of starch-based biodegradable composites reinforced with date palm and flax fibers, Carbohydrate Polymers, 101, pp. 11-19.
  • 12. Juśko, S., Mościcki, L. & Wójtowicz, A. (2009). Cooling-forming section. Polish Design Patent No. PL64690Y1, WUP, 12, p. 3035.
  • 13. Kaushik, A., Singh, M. & Verma, G. (2010). Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw, Carbohydrate Polymers, 82, 2, pp. 337-345.
  • 14. Lavagnolo, M.C., Girotto, F., Rafieenia, R., Danieli, L. & Alibardi, L. (2018). Two-stage anaerobic digestion of the organic fraction of municipal solid waste - Effects of process conditions during batch tests, Renewable Energy, 126, pp. 14-20.
  • 15. Lebiocka, M., Montusiewicz, A., Szaja, A., Rembisz, S. & Nowakowska, E. (2019). Thermophilic co-digestion of sewage sludge and brewery spent grain, Journal of Ecological Engineering, 20, 10, pp. 118-124.
  • 16. Ma, X., Yu, J. & Kennedy, J.F. (2005). Studies on the properties of natural fibers-reinforced thermoplastic starch composites, Carbohydrate Polymers, 62, 1, pp. 19-24.
  • 17. Migneault, S., Koubaa, A., Erchiqui, F., Chaala, A., Englund, K. & Wolcott, M.P. (2009). Effects of processing method and fiber size on the structure and properties of wood-plastic composites, Composites Part A: Applied Science and Manufacturing, 40, 1, pp. 80-85.
  • 18. Mitrus, M., Wójtowicz, A., Oniszczuk, T., Gondek, E. & Mościcki, L. (2017). Effect of processing conditions on microstructure and pasting properties of extrusion-cooked starches, International Journal of Food Engineering, 13, 6, pp. 1-12.
  • 19. Moad, G. (2011). Chemical modification of starch by reactive extrusion, Progress in Polymer Science, 36, 2, pp. 218-237.
  • 20. Montag, D. & Schink, B. (2016). Biogas process parameters - energetics and kinetics of secondary fermentations in methanogenic biomass degradation, Applied Microbiology and Biotechnology, 100, 2, pp. 1019-1026.
  • 21. Muthuraj, R., Misra, M., Defersha, F. & Mohanty, A.K. (2016). Influence of processing parameters on the impact strength of biocomposites: A statistical approach, Composites Part A: Applied Science and Manufacturing, 83, pp. 120-129.
  • 22. Nafchi, A.M, Moradpour, M., Saeidi, M. & Alias, A.K. (2013). Thermoplastic starches: Properties, challenges, and prospects, Starch - Stärke, 65, pp. 61-72.
  • 23. Oniszczuk, T., Combrzyński, M., Matwijczuk, A., Oniszczuk, A., Gładyszewska, B., Podleśny, J., Czernel, G., Karcz, D., Niemczynowicz, A. & Wójtowicz, A. (2019). Physical assessment, spectroscopic and chemometric analysis of starch-based foils with selected functional additives, PloS One, 14, 2, art. no. e0212070.
  • 24. Pagliano, G., Ventorino, V., Panico, A. & Pepe, O. (2017). Integrated systems for biopolymers and bioenergy production from organic waste and by-products: A review of microbial processes, Biotechnology for Biofuels, 10, 113.
  • 25. Reay, D., Smith, K. & Hewitt, C. (2007). Methane: Importance, sources and sinks. In: D. Reay et al. (Eds.) Greenhouse gas sinks. CAB International, Wallingford, UK, pp. 201-206.
  • 26. Romhány, G., Karger‐Kocsis, J. & Czigány, T. (2003). Tensile fracture and failure behavior of thermoplastic starch with unidirectional and cross‐ply flax fiber reinforcements, Macromolecular Materials and Engineering, 288, 9, pp. 699-707.
  • 27. Russo, M.A.L., O’Sullivan, C., Rounsefell, B., Halley, P.J., Truss, R. & Clarke, W.P. (2009). The anaerobic degradability of thermoplastic starch: Polyvinyl alcohol blends: Potential biodegradable food packaging materials, Bioresource Technology, 100, 5, pp. 1705-1710.
  • 28. Ryan, C.A., Billington, S.L. & Criddle, C.S. (2018). Biocomposite fiber-matrix treatments that enhance in-service performance can also accelerate end-of-life fragmentation and anaerobic biodegradation to methane, Journal of Polymer and the Environment, 26, pp. 1715-1726.
  • 29. Saiah, R., Sreekumar, P., Gopalakrishnan, P., Leblanc, N., Gattin, R. & Saiter, J. (2009). Fabrication and characterization of 100% green composite: Thermoplastic based on wheat flour reinforced by flax fibers, Polymer Composites, 30, 11, pp. 1595-1600.
  • 30. Thakur, V.K. & Singha, A.S. (2010). Natural fibres-based polymers: Part I. Mechanical analysis of Pine needles reinforced biocomposites, Bulletin of Materials Science, 33, 3, pp. 257-264.
  • 31. Ueno, Y., Tatara M., Fukui, H., Makiuchi, T., Goto, M. & Sode, K. (2007). Production of hydrogen and methane from organic solid wastes by phase-separation of anaerobic process, Bioresource Technology, 98, 9, pp. 1861-1865.
  • 32. Win, S.S., Ebner, J.H., Brownell, S.A., Pagano, S.S., Cruz-Diloné, P. & Trabold, T.A. (2018). Anaerobic digestion of black solider fly larvae (BSFL) biomass as part of an integrates biorefinery, Renewable Energy, 127, pp. 705-712.
  • 33. Wójtowicz, A. (2008). Influence of ascorbic acid addition on texture of extruded precooked pasta (in Polish). Acta Agrophysica, 12, 1, 245-254.
  • 34. Xie, F., Pollet, E., Halley, P.J. & Avérous, L. (2013). Starch-based nano-biocomposites. Progress in Polymer Science, 38, 10-11, pp. 1590-628.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cdabdf7d-cdb8-44df-8f13-b40c14e960d8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.