PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wykorzystanie obrazów transit-EPID w kontroli jakości radioterapii – przegląd piśmiennictwa

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
The use of the transit-EPID images in the radiotherapy quality assurance – literature review
Języki publikacji
PL
Abstrakty
PL
Wraz z rozwojem coraz bardziej złożonych technik napromieniania pacjenta wiązkami zewnętrznymi, weryfikacja prawidłowości ich realizacji staje się coraz większym wyzwaniem. Jednym z narzędzi, które budzi szczególne zainteresowanie ze względu na swój potencjał zastosowania w kontroli jakości leczenia i powszechną dostępność, jest kaseta portalowa (ang. Electronic Portal Imaging Device, EPID). Koncepcje wykorzystania obrazów transit-EPID (tj. zarejestrowanych podczas seansu terapeutycznego za pomocą EPID) obejmują zarówno próby rekonstrukcji dawki zdeponowanej w pacjencie (począwszy od wyznaczenia „midpoint dose” dla leczenia konformalnego, na rekonstrukcji rozkładu 3D dawki skończywszy), a także porównanie obrazów z poszczególnych frakcji leczenia z obrazem referencyjnym w celu monitorowania zmian anatomicznych i ruchomości wewnętrznej narządów pomiędzy frakcjami leczenia.
EN
As the complexity of developed techniques in External Beam Radiotherapy (EBRT) rises, the Quality Assurance (QA) of the delivery of treatment becomes increasingly challenging. One of the tools that is of particular interest due to its potential applicability in QA and common availability is the Electronic Portal Imaging Device (EPID). Approaches to utilization of transit-EPID images (i.e. images acquired by EPID during the treatment session) include reconstruction of the dose delivered to the patient, as well as simple comparisons of current and baseline transit-EPID images in order to track anatomical changes and inter fraction internal organ motion.
Rocznik
Strony
413--421
Opis fizyczny
Bibliogr. 50 poz.
Twórcy
  • Zakład Fizyki Medycznej, Wielkopolskie Centrum Onkologii, ul. Kaszubska 12, 62-800 Kalisz, tel. +48 62 332 25 49
  • Zakład Fizyki Medycznej, Wielkopolskie Centrum Onkologii, ul. Kaszubska 12, 62-800 Kalisz, tel. +48 62 332 25 49
  • Zakład Fizyki Medycznej, Wielkopolskie Centrum Onkologii, ul. Kaszubska 12, 62-800 Kalisz, tel. +48 62 332 25 49
  • Wydział Nauk o Zdrowiu, Akademia Kaliska, ul. Nowy Świat 4, 62-800 Kalisz
Bibliografia
  • 1. V. N. Hansen et al.: The application of transit dosimetry to precision radiotherapy, The International Journal of Medical Physics and Research, 23(5), 1996, 713-721.
  • 2. M. Kroonwijk et al.: In vivo dosimetry for prostate cancer patients using an electronic portal imaging device (EPID); demonstration of internal organ motion, Radiotherapy and Oncology, 49(2), 1998, 125-132.
  • 3. K. Pasma et al.: Transit dosimetry with an electronic portal imaging device (EPID) for 115 prostate cancer patients, International Journal of Radiation Oncology Biology Physics, 45(5), 1999, 1297-1303.
  • 4. S. Nijsten et al.: Routine individualized patient dosimetry using electronic portal imaging devices, Radiotherapy and Oncology, 83(1), 2007, 65-75.
  • 5. A. Fidanzio et al.: Breast in vivo dosimetry by EPID, Journal of Applied Clinical Medical Physics, 11(4), 2010, 249-262.
  • 6. A. Mans et al.: Catching errors with in vivo EPID dosimetry, The International Journal of Medical Physics Research and Practice, 37(6), 2010, 2638-2644.
  • 7. S. Cilla et al.: Initial clinical experience with EPID-based in-vivo dosimetry for VMAT treatments of head and neck tumors, Physica Medica European Journal of Medical Physics, 32(1), 2016, 52-58.
  • 8. A. Fidanzio et al.: Quasi real time in vivo dosimetry for VMAT, International Journal of Medical Physics Research and Practice, 41(6), 2014, 062103.
  • 9. M.D. Falco et al.: A feasibility study for in-vivo dosimetry procedurę in clinical practice, Technology in Cancer Research & Treatment, 17, 2018, 1533033818779201.
  • 10. A. Piermattei et al.: A validation study of a dedicated software for an automated in vivo dosimetry control in radiotherapy, Medical and Biological Engineering & Computing, 56(10), 2018, 1939-1947.
  • 11. S. Cilla et al.: EPID-based in vivo dose verification for lung stereotactic treatments delivered with multiple breath-hold segmented volumetric modulated arc therapy, Journal of Applied Clinical Medical Physics, 20(3), 2019, 37-44.
  • 12. R. Consorti et al.: EPID-based in vivo dosimetry for stereotactic body radiotherapy of non-small cell lung tumors. Initial clinical experience, Physica Medica European Journal of Medical Physics, 42, 2017, 157-161.
  • 13. I. Olaciregui-Ruiz et al.: Automatic in-vivo portal dosimetry of all treatments, Physics in Medicine and Biology, 58(22), 2013, 8253-8264.
  • 14. B.J. Mijnheer et al.: Overview of 3-year experience with largescale electronic portal imaging device – based 3-dimensional transit dosimetry, Practical Radiation Oncology, 5(6), 2015, e679-687.
  • 15. R.A. Rozendaal: Impact of daily anatomical changes on EPID-based in vivo dosimetry of VMAT treatments of head-and-neck cancer, Radiotherapy and Oncology, 116(1), 2015, 70-74.
  • 16. B. Mijnheer et al.: New developments in EPID-based 3D dosimetry in the Netherlands Cancer Institute, Journal of Physics: Conference Series, 847, 2017, 012033.
  • 17. R.A. Rozendaal et al.: In vivo portal dosimetry for head-andneck VMAT and lung IMRT: linking γ-analysis with differences in dose-volume histograms of the PTV, Radiotherapy and Oncology, 112(3), 2014, 396-401.
  • 18. M. Wendling et al.: In aqua vivo EPID dosimetry, The International Journal of Medical Physics Research and Practice, 39(1), 2012, 367-377.
  • 19. E. Van Uytven et al.: Validation of a method for in vivo 3D dose reconstruction for IMRT and VMAT treatments using on-treatment EPID images and a model-based forward-calculation algorithm, The International Journal of Medical Physics Research and Practice, 42(12), 2015, 6945-6954.
  • 20. P.M. McCowan et al.: Clinical Implementation of a model-based in vivo dose verification system for stereotactic body radiation therapy – volumetric modulated arc therapy treatments using electronic portal imaging device, International Journal of Radiation Oncology Biology Physics, 97(5), 2017, 1077-1084.
  • 21. K. Chytyk-Praznik et al.: Model-based prediction of portal dose images during patient treatment, The International Journal of Medical Physics Research and Practice, 40(3), 2013, 031713.
  • 22. H. Woodruff, First experience with real-time EPID based delivery verification during IMRT and VMAT sessions, International Journal of Radiation Oncology Biology Physics, 93(3), 2015, 516-522.
  • 23. T. Fuangrod et al.: Simulation of clinical relevance errors detected by real-time EPID-based patient verification system, Radiotherapy and Oncology, 2016, 167.
  • 24. T. Fuangrod et al.: A method for evaluating treatment quality using in vivo EPID dosimetry and statistical process control in radiation therapy, International Journal of Health Care Quality Assurance, 30(2), 2017, 90-102.
  • 25. T. Fuangrod et al.: Investigation of a real-time EPID-based patient dose monitoring safety system using site-specific control limits, Radiotherapy and Oncology, 11(1), 2016, 106.
  • 26. S.L. Berry et al.: Implementation of EPID transit dosimetry based on a through-air dosimetry algorithm, The International Journal of Medical Physics Research and Practice, 39(1), 2012, 87-98.
  • 27. M.A. Najem et al.: in-vivo EPID dosimetry for IMRT and VMAT based on through-air predicted portal dose algorithm, Physica Medica European Journal of Medical Physics, 52, 2018, 143-153.
  • 28. S. Deshpande et al.: A simple model for transit dosimetry based on a water equivalent EPID, The International Journal of Medical Physics Research and Practice, 45(3), 2018, 1266-1275.
  • 29. C. Bojechko et al.: Quantifying the performance of in vivo portal dosimetry in detecting four types of treatment parameter variations, Med Phys., 42(12), 2015, 6912-6918.
  • 30. J. Zhu et al.: Fast 3D dosimetric verifications based on an electronic portal imaging device using a GPU calculation engine, Radiation Oncology, 10(1), 2015, DOI:10.1186/s13014-015-0387-7.
  • 31. Y. Li et al.: Investigating the effectiveness of monitoring relevant variations during IMRT and VMAT treatments by EPID-based 3D in vivo verification performed using planning CTs, PLOS ONE, 14(6), 2019, e0218803.
  • 32. T. Baek et al.: Feasibility study of patient specific quality assurance using transit dosimetry based on measurement with an electronic portal imaging device, Progress in Medical Physics, 28(2), 2017, 54.
  • 33. J. Li et al.: Setup in a clinical workflow and impact on radiotherapy routine of an in vivo dosimetry procedure with an electronic portal imaging device, PLOS ONE, 13(2), 2018, e0192686.
  • 34. S. Kang et al.: Evaluation of interfraction setup variations for postmastectomy radiation therapy using EPID-based in vivo dosimetry, Journal of Applied Clinical Medical Physics, 20(10), 2019, 43-52.
  • 35. N. Delaby et al.: Validation of a transit EPID device for a clinical use: application to iViewDose (Elekta), Physica Medica European Journal of Medical Physics, 2017.
  • 36. I. Olaciregui-Ruiz et al.: Transit and non-transit 3D EPID dosimetry versus detector arrays for patient specific QA, Journal of Applied Clinical Medical Physics, 20(6), 2019, 79-90.
  • 37. M. Held et al.: Comissioning and Evaluation of Electronic Portal Imaging Device – based In Vivo Dosimetry Software, Cureus Journal of Medical Science, 10(2), 2018, e2139.
  • 38. K. Ricketts et al.: Implementation and evaluation of a transit dosimetry system for treatment verification, Physica Medica European Journal of Medical Physics, 32(5), 2016, 671-680.
  • 39. K. Ricketts et al.: Clinical experience and evaluation of patient treatment verification with a transit dosimeter, International Journal of Radiation Oncology Biology Physics, 95(5), 2016, 1513-1519.
  • 40. S. Celi et al.: EPID based in vivo dosimetry system, clinical experience and results, Journal of Applied Clinical Medical Physics, 17(3), 2016, 262-276.
  • 41. M. Esposito et al.: Characterization of EPID software for VMAT transit dosimetry, Australian Physical and Engineering Sciences in Medicine, 41(4), 2018, 1021-1027.
  • 42. W.H. Nailon et al.: EPID-based in vivo dosimetry using Dosimetry Check: Overview and clinical experience in a 5-yr study including breast, lung, prostate amd head and neck cancer patients, Journal of Applied Clinical Medical Physics, 20(1), 2019, 6-16.
  • 43. M. Kruszyna-Mochalska et al.: EPID-based daily verification of reproducibility of patients irradiation with IMRT plans, Reports of Practical Oncology and Radiotherapy, 23(5), 2018, 309-314.
  • 44. O. Piron et al.: Using 2D Relative Gamma Analysis from EPID image as a predictor of plan deterioration due to anatomical changes, The International Journal of Medical Physics Research and Practice, 2015.
  • 45. O. Piron et al.: Establishing action threshold for change in patient anatomy using EPID gamma analysis and PTV coverage for head and neck radiotherapy department, The International Journal of Medical Physics Research and Practice, 2018, DOI: 10.1002/mp.13045.
  • 46. A. Klimas et al.: EPID – a useful interfraction QC tool, Polish Journal of Medical Physics and Engineering, 25(4), 2019, 221-228.
  • 47. A.H. Zhuang et al.: Sensitivity study of an automated system for daily patient QA using EPID exit dose images, Journal of Applied Clinical Medical Physics, 19(3), 2018, 114-124.
  • 48. 48 X. Ray et al.: Evaluating the sensitivity of Halcyon’s automatic transit image acquisition for treatment error detection: A Phantom study using static IMRT, Journal of Applied Clinical Medical Physics, 20(11), 2019, 131-143.
  • 49. P. Jin et al.: Quantitative evaluation of transmission EPID daily imaging on a Halcyon linac, Journal of Physics: Conference Series, 1305(1), 2019, 012064.
  • 50. H. Kim et al.: Early clinical experience with Varian Halcyon V2 linear accelerator: Dual-isocenter IMRT planning and delivery with portal dosimetry for gynecological cancer treatments, Journal of Applied Clinical Medical Physics, 20(11), 2019, 111-120.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cdaad702-59f7-47ed-88e1-b61246ed3cf9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.