PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of engine speeds and dimethyl ether on methyl decanoate HCCI combustion and emission characteristics based on low-speed two-stroke diesel engine

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The combustion and emission characteristics of homogeneous charge compression ignition (HCCI) fuelled by methyl decanoate (MD) with different engine speeds and dimethyl ether (DME) mixing ratios are investigated in this work. Engine data of a MAN B&W 6S70MC low-speed two-stroke marine diesel engine were used for the reactor. The results show that a decrease of engine speed has little effect on the in-cylinder temperature and pressure of the engine at constant excess air coefficient of 1.5. Meanwhile, NOx emissions decrease with a decrease of engine speed in pure MD HCCI combustion. The results also indicate that NOx and CO2 emissions decrease significantly with an increase in the percentage of DME in MD and DME mixing combustion at a constant total mole fraction and engine speed of 85 revolutions per minute (r/min).
Rocznik
Tom
Strony
85--95
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
autor
  • Marine Engineering College Dalian Maritime University Linghai, 116026 Dalian, China
autor
  • Merchant Marine College Shanghai Maritime University Pudong, 201306 Shanghai, China
Bibliografia
  • 1. Ashraful, A. M., Masjuki, H. H., Kalam, M. A., Rizwanul Fattah, I. M., Imtenan, S., Shahir, S. A., Mobarak, H. M. (2014) Production and Comparison of Fuel Properties, Engine Performance, and Emission Characteristics of Biodiesel from Various Non–Edible Vegetable Oils: A Review. Energy Convers. Manage., Vol. 80, 202−228.
  • 2. Buyukkaya, E. (2010) Effects of Biodiesel on A DI Diesel Engine Performance, Emission and Combustion Characteristics. Fuel, Vol. 89(10), 3099–3105.
  • 3. Cho, C. P., Pyo, Y. D., Jang, J. Y., Kim, G. C., Shin, Y. J. (2017) NOx Reduction and N2O Emissions in A Diesel Engine Exhaust Using Fe–Zeolite and Vanadium based SCR Catalysts. Appl. Therm. Eng., Vol. 110, 18−24.
  • 4. Dayma, G., Togbé, C., Dagaut, P. (2009) Detailed Kinetic Mechanism for the Oxidation of Vegetable Oil Methyl Esters: New Evidence from Methyl Heptanoate. Energy Fuels, Vol. 23(9), 4254–4268.
  • 5. Demirbas, A. (2007) Importance of Biodiesel as Transportation Fuel. Energy Policy, Vol. 35(9), 4661–4670.
  • 6. European Parliament, 2050, The Future Begins Today-Recommendations for the EU’s Future Integrated Policy on Climate Change.
  • 7. Fischer, S. L., F. L. Dryer., Curran, H. J. (2000) The Reaction Kinetics of Dimethyl Ether. I: High–Temperature Pyrolysis and Oxidation in Flow Reactors. Int. J. Chem. Kinet., Vol. 32(12), 713–740.
  • 8. Fisher, E. M., Pitz, W. J., Curran, H. J., Westbrook, C. K. (2000) Detailed Chemical Kinetic Mechanisms for Combustion of Oxygenated Fuel. Proc. Combust. Inst., Vol. 28(2), 1579–1586.
  • 9. Gaïl, S., Thomson, M. J., Sarathy, S. M., Syed, S. A., Dagaut, P., Dievart, P., Marchese, A. J., Dryer, F. L. (2007) A Wide–Ranging Kinetic Modeling Study of Methyl Butanoate Combustion. Proc. Combust. Inst., Vol. 31 (1), 305−311.
  • 10. Geng, P., Tan, Q. M., Zhang, C. H., Wei, L. J., He, X. Z., Cao, E. M., Jiang, K. (2016) Experimental Investigation on NOx and Green House Gas Emissions from A Marine Auxiliary Diesel Engine Using Ultralow Sulfur Light Fuel. Sci. Total Environ., Vol. 572, 467–475.
  • 11. He, C., Ge, Y. S., Tan, J. W., You, K. W., Han, X. K., Wang, J. F. (2010) Characteristics of Polycyclic Aromatic Hydrocarbons Emissions of Diesel Engine Fueled with Biodiesel and Diesel. Fuel, Vol. 89(8), 2040–2046.
  • 12. Haas, M. J., Scott, K. M., Alleman, T. L., McCormick, R. L. (2001) Engine Performance of Biodiesel Fuel Prepared from Soybean Soapstock: A High Quality Renewable Fuel Produced from A Waste Feedstock. Energy Fuels, Vol. 15(5), 1207−1212.
  • 13. Herbinet, O., Pitz, W. J., Westbrook, C. K. (2008) Detailed Chemical Kinetic Oxidation Mechanism for a Biodiesel Surrogate. Combust. Flame, Vol. 154(3), 507−528.
  • 14. Hou, J., Zhang, P., Yuan, X., Zheng, Y. (2011) Life Cycle Assessment of Biodiesel from Soybean, Jatropha and Microalgae in China Conditions. Renew. Sust. Energ Rev., Vol. 15(9), 5081−5091.
  • 15. Jeon, J., Lee, J. T., Park, S. (2016) Nitrogen Compounds (NO, NO2, N2O and NH3) in NOx Emissions from Commercial EURO VI Type Heavy–Duty Diesel Engines with A Urea–Selective Catalytic Reduction System. Energy Fuels, Vol. 30(8), 6828–6834.
  • 16. Jothi, N. K. M., Nagarajan, G., Renganarayanan, S. (2007) Experimental Studies on Homogeneous Charge CI Engine Fueled with LPG Using DEE as An Ignition Enhancer. Renew Energ., Vol. 32(9), 1581–1593.
  • 17. Kim, M. Y., Yoon, S. H., Ryu, B. W., Lee, C. S. (2008) Combustion and Emission Characteristics of DME as An Alternative Fuel for Compression Ignitions with A High Pressure Injection System. Fuel, Vol. 87(12), 2779– 2786.
  • 18. Koshe-Höinghaus, K., Oßwald, P., Cool, T., Kasper, T.,Hansen, N., Qi, F., Westbrook, C. K., Westmoreland, P. R. (2010) Biofuel Combustion Chemistry: From Ethanol to Biodiesel. Angew. Chem. Int., Vol. 49(21), 3572−3597.
  • 19. Kumar, P., Rehman, A. (2016) Bio-Diesel in Homogeneous Charge Compression Ignition (HCCI) Combustion. Renew. Sust. Energ. Rev., Vol. 56, 536–550.
  • 20. Lai, J. Y. W., Lin, K. C., Violi, A. (2011) Biodiesel Combustion: Advances in Chemical Kinetic Modeling. Prog. Energy Combust. Sci., Vol. 37(1), 1−14.
  • 21. Lu, X. C., Han, D. Huang, Z. (2011) Fuel Design and Management for the Control of Advanced Compressionignition Combustion Modes. Prog. Energ. Combust., Vol. 37(6), 741–783.
  • 22. Ma, J. J., Lue, X. C., Ji, L. B. (2008) An Experimental Study of HCCI-DI Combustion and Emissions in A Diesel Engine with Dual Fuel. Int. J. Therm. Sci., Vol. 47(9), 1235–1242.
  • 23. Miller, J., Bowman, C. (1989) Mechanism and Modeling of Nitrogen Chemistry in Combustion. Prog. Energy Combust. Sci., Vol. 15(4), 287–338.
  • 24. Moradi, G. R., Dehghani, S., Ghanei, R. (2012) Measurements of Physical Properties During Transesterification of Soybean Oil to Biodiesel for Prediction of Reaction Progress. Energy Convers. Manage., Vol. 61, 67−70.
  • 25. Ng, J. H., Ng, H. K., Gan, S. Y. (2012) Characterisation of Engine–Out Responses from A Light-Duty Diesel Engine Fuelled with Palm Methyl Ester (PME). Appl. Energ., Vol. 90(1), 58–67.
  • 26. Olsson, J. O., Tunestal, P., Johansson, B. (2001) Closed-Loop Control of An HCCI Engine. SAE, Vol. 110, 1076–1185.
  • 27. Park, S. H., Lee, C. S. (2014) Applicability of Dimethyl Ether (DME) in A Compression Ignition Engine as An Alternative Fuel. Energy Convers. Manage., Vol. 86, 848–863.
  • 28. Pienkos, P. T., Darzins, A. (2009) The Promise and Challenges of Microalgal–Derived Biofuels. Biofuels Bioprod Bioref., Vol. 3(4), 431–440.
  • 29. Radica, G., Antonić, R., Račić, N. (2009) Engine Working Cycle Analysis for Diagnostic and Optimisation Purposes. Brodogradnja, Vol. 60(4), 378−387.
  • 30. Rajasekar, E., Murugesan, A., Subramanian, R., Nedunchezhian, N. (2010) Review of NOx Reduction Technologies in CI Engines Fuelled with Oxygenated Biomass Fuels. Renew. Sust Energ Rev., Vol. 14(7), 2113–2121.
  • 31. Roh, H. Gu., Lee, D., Lee, C. S. (2015) Impact of DMEBiodiesel, Diesel-Biodiesel and Diesel Fuels on the Combustion and Emission Reduction Characteristics of ACI Engine According to Pilot and Single Injection Strategies. J. Energy Inst., Vol. 88(4), 376–385.
  • 32. Santner, J., Ahmed, S. F., Farouk, T., Dryer, F. L. (2016) Computational Study of NOx Formation at Conditions Relevant to Gas Turbine Operation: Part 1. Energy Fuels, Vol. 30(8), 6745–6755.
  • 33. Semelsberger, T. A., Borup, R. L., Howard, L., Greene, H. L. (2006) Dimethyl Ether (DME) as An Alternative Fuel. J. Power Sources, Vol. 156(2), 497–511.
  • 34. Sjoberg, M., Dec, J. E. (2005) An Investigation into Lowest Acceptable Combustion Temperatures for Hydrocarbon Fuels in HCCI Engines. P. Combust. Inst., Vol. 30, 2719–2726.
  • 35. Szybist, J. P., Mcfarlane, J., Bunting, B. G. (2007) Comparison of Simulated and Experimental Combustion of Biodiesel Blends in A Single Cylinder Diesel HCCI Engine. SAE.
  • 36. Thomas, G., Feng, B., Veeraragvan, A., Cleary, M. J., Drinnan, N. (2014) Emissions from DME Combustion in Diesel Engines and Their Implications on Meeting Future Emission Norms: A Review. Fuel Process Technol., Vol. 119, 286–304.
  • 37. Togbé, C., May-Carle, J-B., Dayma, G., Dagaut, P. (2010) Chemical Kinetic Study of the Oxidation of A Biodiesel–Bioethanol Surrogate Fuel: Methyl Octanoate–Ethanol Mixtures. J. Phys. Chem. A, Vol. 114(11), 3896–3908.
  • 38. Tyson, K. S. (2001) Biodiesel Handling and Use Guidelines, National Renewable Energy Laboratory (NREL): Golden, CO, NREL/TP-580-30004.
  • 39. Wang, Y., Zhao, Y., Yang, Z. (2013) Dimethyl Ether Energy Ratio Effects in A Dimethyl Ether-Diesel Dual Fuel Premixed Charge Compression Ignition Engine. Applied Thermal Engineering, Vol. 54(2), 481–487.
  • 40. Wang, Y., Zhou, L. B., Yang, Z. J., Dong, H. Y. (2005) Study on Combustion and Emission Characteristics of a Vehicle Engine Fuelled with Dimethyl Ether. Proc. Inst. Mech. Eng. Part D J. Automob. Eng., Vol. 219(2), 263–269.
  • 41. Westbrook, C. K., Naik, C. V., Herbinet, O., Pitz, W. J., Mehl, M., Sarathy, S.M. et al. (2011) Detailed Chemical Kinetic Reaction Mechanisms for Soy and Rapeseed Biodiesel Fuels. Combust. Flame, Vol. 158(4), 742–755.
  • 42. Yao, M. F., Chen, Z., Zheng, Z. Q., Zhang, B., Xing, Y. (2006) Study on the Controlling Strategies of Homogeneous Charge Compression Ignition Combustion with Fuel of Dimethyl Ether and Methanol. Fuel, Vol. 85(14–15), 2046–2056.
  • 43. Yao, M. F., Zheng Z. L., Liu, H. F. (2009) Progress and Recent Trends in Homogeneous Charge Compression Ignition (HCCI) Engines. Prog. Energ. Combust., Vol. 35(5), 398–437.
  • 44. Zeldovich, Y. B. (1946) The Oxidation of Nitrogen in Combustion Explosions. Acta Physico-Chimica. U.S.S.R., Vol. 21(4), 577–628.
  • 45. Zhao, R., Gao, D., Pan, X. X. et al. (2018) Theoretical Studies of Anharmonic Effect on the Main Reactions Involving in NO2 in Fuel Burning. Chem Phys Lett., Vol. 703, 97–105.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cda11e5f-3d60-4a75-bfba-9cebf7663a25
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.